
System Informatics (Системная информатика), No. 14 (2019) 1

UDK 004.423.42, 004.434, 681.51

Operational Semantics of Reflex∗

Anureev I.S. (A.P. Ershov Institute of Informatics Systems, Institute of

Automation and Electrometry)

Reflex is a process-oriented language that provides design of easy-to-maintain control

software. The language has been successfully used in several safety-critical cyber-physical

systems, e. g. control software for a silicon single crystal growth furnace. Now, the main

goal of the Reflex language project is development a support for computer aided software

engineering targeted to safety-critical application. This paper presents formal operational

semantics of the Reflex language as a base for applying formal methods to verification of

Reflex programs.

Keywords: operational semantics, Reflex language, control system, control software,

programmable logic controller

1. Introduction

The increasing complexity and use of embedded and cyber-physical systems in our lives

requires a reassessment of the design and development tools. Most challenging are safety-

critical systems, where incorrect behavior and/or lack of robustness lead to unacceptable loss

in funds or even human life. Such systems are widely spread in industry, especially, in chemistry

and metallurgy plants. Since behavior of cyber-physical system is determined by the control

system, and behaviour of control system is specified by software, the study of control software

is of the great interest.

Many control systems are based on industrial programmable logic controllers (PLCs) pos-

sessing the following features: they are inherently open (i. e. communicate with an external

environment), reactive (have event-driven behaviour) and concurrent (have to process a multi-

ple asynchronous events). These features lead to special languages being used in development

of control software, e.g. the IEC 61131-3 languages [1] which are the most popular in the

PLC domain. However, as the complexity of control software increases and quality is of higher

priority, the 35 years old technology based on the IEC 61131-3 approach is not able to address

the present-day requirements [2].

∗This work has been supportedby the Russian Ministry of Education and Science and the Russian Foundation for Basic Research

(grants 17-07-01600 and 17-01-00789).

2 Anureev I.S. Operational Semantics of Reflex

Reflex is a domain-specific extension of the C language developed as an alternative to IEC

61131-3 languages. A Reflex program is specified as a set of communicating concurrent pro-

cesses. Specialized constructs are introduced for controlling processes and handling time inter-

vals. Reflex also provides constructs for linking its variables to physical I/O signals. Reflex

assumes scan-based execution, i.e. a time-triggered control loop, and strict encapsulation of

platform-dependent I/O subroutines into a library, which is a widely applied technique in IEC

6113-3 based systems. To provide both ease of support and cross-platform portability, the

generation of executable code is implemented in two stages: the Reflex translator generates

C-code and then a C-compiler produces executable code for the target platform.

Currently, the Reflex project is focused on design and development tools for safety-critical

systems. Because of its system independence Reflex easily integrates with LabVIEW [3]. This

allows to develop software combining event-driven behavior with advanced graphic user inter-

face, remote sensors and actuators, LabVIEW-supported devices, etc. Using the flexibility of

LabVIEW, a set of plant simulators was designed for learning purposes [4]. The LabVIEW-

based simulators include 2D animation, tools for debugging, and language support for learning

of control software design. One of the results obtained in this direction is a LabVIEW-based

dynamic verification toolset for Reflex programs. Dynamic verification treats the software as

a black-box, and checks its compliance with the requirements by observing run-time behavior

of the software on a set of test-cases. While such a procedure can help detect the presence of

bugs in the software, it cannot guarantee their absence [5].

Unlike dynamic verification, static methods are based on source code analysis and are com-

monly recognized as the only way to ensure required properties of the software. It is therefore

very important to adopt static verification methods for Reflex programs. Since these meth-

ods require programs to have formal semantics, in this paper we present formal operational

semantics of Reflex programs.

2. Introduction to Reflex

Reflex syntax is demonstrated here using a simple example of a program controlling a hand

dryer like those often found in public restrooms (Listing 1). The program uses input from an

IR sensor, indicating presence of hands under the dryer and controls the fan and heater with a

joint output signal. A formal Reflex syntax definition in EBNF has been specified in [6].

PROGR HandDryerController {

System Informatics (Системная информатика), No. 14 (2019) 3

TACT 100;
CONST ON 1;
CONST OFF 0;

/* ============================= */
/* I/O ports specification */
/* direction , name , address , */
/* offset , size of the port */
/* ============================= */

INPUT SENSOR_PORT 0 0 8;
OUTPUT ACTUATOR_PORT 1 0 8;

/* ============================= */
/* processes definition */
/* ============================= */

PROC Init {
/*===== VARIABLES ============= */

BOOL I_HANDS =
{SENSOR_PORT [1]} FOR ALL;

BOOL O_DRYER =
{ACTUATOR_PORT [1]} FOR ALL;

/*===== STATES ================ */
STATE Waiting {

IF (I_HANDS == ON) {
O_DRYER = ON;
SET NEXT;

} ELSE O_DRYER = OFF;
}
STATE Drying {

IF (I_HANDS == ON)
RESET TIMEOUT;
TIMEOUT 10

SET STATE Waiting;
}

} /* \PROC */
} /* \PROGRAM */

Listing 1: Hand dryer example in Reflex

In Reflex, a program is presented as a set of concurrently running communicating processes,

each defined in textual form starting with a PROC keyword:

PROC <process name > {<process body >}

The first process defined in the text is initially active when the program is started.

Program execution is split into clocks with a fixed period in milliseconds specified with the

TACT directive at the top of the code.

The body of a process consists of variable declarations and list of state function definitions

in the following form:
STATE <state name > {<state body >}

The state that is defined first in the process body is one into which that process is transitioned

by START PROC statements. Two extra states STOP and ERROR are defined implicitly for each process.

The body of a state is defined as a sequential block of code, consisting of the assignment

statements, if statements, switch statements, process control statements and one optional time-

out statement that define events and their corresponding reactions. To prevent the code from

blocking the program execution, Reflex does not provide any loop statements.

4 Anureev I.S. Operational Semantics of Reflex

The syntax for expression and selection statements in Reflex is identical to that in C (except

for Reflex-specific boolean operations on states called activity predicates) and is discussed in

detail in [6]. For introduction purposes here we focus on those constructs that are specific to

Reflex.

Process control and communication in Reflex is managed using state transitions, control

statements and activity predicates that can be used in expressions. State can be only be used

by the process on itself and set the process state for the next activation cycle:
SET STATE <state name >;

A reserved keyword NEXT can be used here in lieu of explicit state name to denote a transition

to the state that is defined next to the current along the program text.

The START/STOP/ERROR statements allow processes to start/stop other processes and to stop

themselves - either normally or in error state. These statements are responsible for divergence

and convergence of control flow:
START PROC <process name >;
STOP PROC <process name >;
STOP;
ERROR;

Processes are also able to check whether other processes are in their active or passive (states

STOP and ERROR) states using selection statements in conjunction with ACTIVE/PASSIVE predicates,

e.g.:
IF (PROC <process name > IN STATE ACTIVE) { ... }

To provide means for tracking time, timeout statements have been introduced in Reflex:
TIMEOUT <clocks num > <statement >

This statement can only be used once in a state function and should then be the last

statement in the state body. It allows to specify a reaction to the event of the process spending

more than the specified amount of time in its current state.

The process body can contain variable definitions with port bindings and scope directives:
<type > <variable name > = <port binding > <scope directive >;

Supported types are BOOL for Boolean values as well as INT, SHORT, LONG, FLOAT and DOUBLE that

behave the same way as in C. The FOR ALL scope directive is to indicate that this variable can be

used by any processes in the program. Port binding makes the variable being read into from an

input port or written into the port if that port is defined as output. Ports used in the program

are defined before the process definitions in the following format:
<direction > <port name > <base address >
<offset > <size in bits >;

System Informatics (Системная информатика), No. 14 (2019) 5

One important feature of variables bound to ports is that all read and write operations for

these variables are double-buffered. The values of I/O ports are read once per program cycle

and each value is stored in two instances – one for read and one for write operations. New values

for the output ports are set and sent to external devices at the end of the cycle. This way all

processes read the same port values even if they are modified inside that cycle of execution.

3. Operational Semantics of Reflex

Let N be a set of natural numbers (including 0). Let U∗ be a set of all sequences from

elements of set U , |u| and u.i denote length and i-th element of sequence u ∈ U∗, respectively.

Let < u1, . . . , um > denote a sequence of elements u1, ..., um and con(w1, . . . , wn) denote

concatenation of sequences w1, ..., wn.

For the set A of Reflex programs we define: sets T , CR, H and E of types, constructs,

statements and expressions, set val(t) of all values of type t ∈ T , and set Γ = ∪t∈Tval(T) of all

values.

For each program α ∈ A we define: its environment π, set P = {p1, . . . , pn} of processes,

set Θ of process states, set F of functions, set V = Vs ∪ Vl of variables, set Vs = Vi ∪ Vo of

shared variables (they are shared with π), set Vl of local variables (Vr ∩ Vl = ∅), set Vi of input

variables (π can only write to them), set Vo of output variables (π can only read from them),

Vi∩Vo = ∅, function vt ∈ V → T associating variables with their types, function pso ∈ P → Θ∗

associating processes with ordered sequence of their states (they are listed in the order they

appear in p), ordered sequence po ∈ P n of processes (they are listed in the order their definitions

appear in α), function psv ∈ Θ→ H associating process states with their bodies (statements),

function par ∈ F → Vl associating functions with their parameters, and function bod ∈ F → H

associating functions with their bodies (statements).

For each program α we consider that the following restrictions hold:

1. Program α is well-formed.

2. Information about ports of α and matching variables with ports is not taken into ac-

count as it relates to communication with physical devices. Program α interacts with its

environment directly through input and output variables.

3. Variable access levels in α are not taken into account, since they determine only the

correct access to variables, which is provided for well-formed programs.

4. There is no overload of names of process states, variables and function parameters, i.

6 Anureev I.S. Operational Semantics of Reflex

e. α is a result of renaming overloaded names. Therefore we can consider that function

parameters are also variables. For each function f , new variable val_f specifying the

return value of f is added to α.

5. There is no a tact declaration and constant declarations in α, i. e. α is a result of

execution of all C-like macro substitutions.

6. Processes are executed sequentially in each tact.

Since Reflex is an extension of C, its operational semantics is based on a transition system

(S, Si,→R,→C), where S is a set of states, Si ⊆ S is a state of initial states, →R and →C

are transition relations for Reflex-specific constructs and C programs, respectively. There are

several solutions for description of operational semantics of C [7–11]. Therefore we focus on

operational semantics of Reflex-specific constructs, considering that relation →C is determined

by one of these approaches (our description is closest to the approach [10]).

Let u.w denote the value of function u for argument w.

A state s ∈ S is defined as a tuple (gc, cp, lc, ps, vv, ih, oh, cf), where gc ∈ N is a global

clock, cp ∈ P is a current process, lc ∈ P → N is a function associating processes with their

local clocks, all clocks count time in ticks (one tick corresponds to one iteration of control loop),

ps ∈ P → Θ is a function associating processes with their states, vv ∈ V → Γ is a function

associating variables with their values, ih ∈ Vi → Γ∗ is an input history (ih.v.i is a value of

v ∈ Vi written by π during i-th tick of global clock gc), oh ∈ Vo → Γ∗ is an output history

(oh.v.i is a value of v ∈ Vo read by π during i-th tick of global clock gc), and current function

cf (its body is executed).

Let s.gc, ..., s.oh denote access to component gc, ..., oh of state s.

A state s is initial if gc = 0, lc.p = 0 for each p ∈ P , ps(po.1) = pso.(po.1), ps.(po.i) = stop

for each 1 < i ≤ n, |ih.v| = 0 for each v ∈ Vi, and |oh.v| = 1 for each v ∈ Vo.

For the transition system we define: set ΞC = CC × S of configurations of C programs, set

ΞR = CR×S of configurations of Reflex programs, and set Ξ = ΞC ∪ΞR of configurations. The

transition relations have the following properties: →C∈ ΞC × ΞC and →R∈ ΞR × Ξ.

Operational semantics of Reflex-specific constructs is defined by transition rules. Many of

these rules use meta-assignment u1.u2...um := u;.

Meta-assignment. Let upd(w, u1.u2.um, u) be a function replacing w.u1.u2.um by

u in w. Then meta-assignment is defined by rule

(u1.u2.um := u;, s)→R (u, upd(s, u1.u2.um, u)).

System Informatics (Системная информатика), No. 14 (2019) 7

Program. Program α is defined by rules

(α;, s)→R (CONTROL LOOP;, s);

(CONTROL LOOP;, s)→R

(INPUT; p1; ... pn; OUTPUT; TICK; CONTROL LOOP;, s).

Construct CONTROL LOOP; defines repeated control loop. Constructs INPUT; and OUTPUT; interact

with environment, writing to input variables and reading from output variables, respectively.

Construct p; executes process p. Construct TICK; increments the value of global and local clocks.

These constructs are defined by rules

If vv′ ∈ V → Γ, and ih′(v) = con(ih(v), < vv′(v) >) for each v ∈ Vi
then (INPUT;, s)→R (ih := ih′;, s);

If oh′(v) = con(oh(v), < vv(v) >) for each v ∈ Vo
then (OUTPUT;, s)→R (oh := oh′;, s);

(p;, s)→ (psv.(ps.p), s);

(TICK;, s)→ (gc := s.gc+ 1; lc.p1 := s.lc.p1 + 1; ...; lc.pn := s.lc.pn + 1;, s).

Activity predicates. They are defined by rules:

((PROC p IN STATE ACTIVE), s)→R (s.ps.p 6= STOP ∧ s.ps.p 6= ERROR, s);

(PROC IN STATE ACTIVE, s)→R ((PROC s.cp IN STATE ACTIVE), s);

((PROC p IN STATE INACTIVE), s)→R (s.ps.p = STOP ∨ s.ps.p = ERROR, s);

(PROC IN STATE INACTIVE, s)→R ((PROC s.cp IN STATE INACTIVE), s);

((PROC p IN STATE STOP), s)→R (s.ps.p = stop, s);

(PROC IN STATE STOP, s)→R ((PROC s.cp IN STATE STOP), s);

((PROC p IN STATE ERROR), s)→R (s.ps.p = ERROR, s);

(PROC IN STATE ERROR, s)→R ((PROC s.cp IN STATE ERROR), s).

Control statements. They are defined by rules

(STOP PROC p;, s)→R (lc.p := 0; ps.p := stop;, s);

(STOP;, s)→R (STOP PROC s.cp;, s);

(ERROR PROC p;, s)→R (lc.p := 0; ps.p := error;, s);

(ERROR;, s)→R (ERROR PROC s.cp;, s);

(START PROC p;, s)→R (lc.p := 0; ps.p := pso.p.1;, s);

(RESTART;, s)→R (START PROC s.cp;, s);

(SET STATE θ;, s)→R (lc.p := 0; ps.p := θ;, s);

If pso.p = con(. . . , < s.ps.(s.cp), θ >, . . .) then (SET NEXT, s)→R (lc.p := 0; ps.p := θ;, s).

Timeout statements. They are defined by rules

8 Anureev I.S. Operational Semantics of Reflex

(RESET TIMEOUT;, s)→R (lc.(s.cp) := 0;, s);

If (e, s)→R (γ, s′), and s.cl.(s.cp) ≥ γ then (TIMEOUT e η, s)→R (η, s′);

If (e, s)→R (γ, s′), and s.cl.(s.cp) < γ then (TIMEOUT e η, s)→R (OK, s′).
General statements. They are defined by rules
If (e, s)→R (TRUE, s′) then (IF e η1 ELSE η2, s)→R (η1, s

′);

If (e, s)→R (FALSE, s′) then (IF e η1 ELSE η2, s)→R (η2, s
′);

If (e, s)→R (TRUE, s′) then (IF e η, s)→R (η, s′);

If (e, s)→R (FALSE, s′) then (IF e η, s)→R (OK, s′);

If s.cf = f , and (e, s)→R (γ, s′) then (RETURN e;, s)→R (vv.valf := γ, s′);

({η1 ... ηm}, s)→R (η1 ...ηm, s′);

If (η1, s)→R (OK, s′) then (η1 η2 ... ηm, s)→R (η2 ...ηm, s′).
Expressions. They are defined by rules
If (e, s)→R (FAIL, s′) then (v = e, s)→R (FAIL, s′);

If (e, s)→R (γ, s′) then (v = e, s)→R (vv.v := γ;, s′);

If par.f =< v1, . . . , vm >, FAIL /∈ {γ1, . . . , γm}, and

(e1, s)→R (γ1, s1), (e2, s1)→R (γ2, s2), ..., (em, sm−1)→R (γm, sm)

then (f(e1, . . . , em);, s)→R

(vv.v1 := γ1; . . . ; vv.vm := γm; bod.f, sm);

If par.f =< v1, . . . , vm >, FAIL /∈ {γ1, . . . , γk−1}, γk = FAIL, and

(e1, s)→R (γ1, s1), (e2, s1)→R (γ2, s2), ..., (ek, sk−1)→R (γk, sk)

then (f(e1, . . . , em);, s)→R (FAIL, sk).
Sequential composition. It is defined by rules
If (η1, s)→R (OK, s′) then (η1 η2 ... ηm, s)→R (η2 ...ηm, s′);

If (η1, s)→R (FAIL, s′) then (η1 η2 ... ηm, s)→R (FAIL, s′).

4. Discussion and Conclusion

Reflex has very simple semantics in terms of data structures, expressions and statements. It

has no pointers, arrays, and structures. It has no iteration statements and jump statements. It

has a limited number of operations. Its complexity is due to scan-based execution, interaction

with environment, handling time intervals, process interaction and linking its variables to phys-

ical I/O signals. We propose operational semantics which copes with this complexity by using

concepts of global and local clocks, dividing variables into internal, input and output ones, and

modeling input/output of programs with history of values of input and output variables.

Current critical systems commonly use a lot of floating-point computations, and thus the

System Informatics (Системная информатика), No. 14 (2019) 9

testing or static analysis of programs containing floating-point operators has become a priority.

However, correctly defining the semantics of common implementations of floating-point is tricky,

because semantics may change with many factors beyond source-code level, such as choices made

by compilers [12]. Therefore, we plan to modify operational semantics rules for arithmetical

operations based on the platform-independent approach to specification and verification of

arithmetical operations and standard mathematical functions [13–15].

References

1. IEC 61131-3: Programmable controllers. Part 3: Programming languages. Rev. 2.0. International

Electrotechnical Commission Std., 2003.

2. Basile F., Chiacchio P., Gerbasio D. On the Implementation of Industrial Automation Systems

Based on PLC // IEEE Trans. on Automation Science and Engineering. 2013. Vol. 10, No. 4. P.

990–1003.

3. Travis J., Kring J. LabVIEW for Everyone: Graphical Programming Made Easy and Fun. 3rd

Edition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006

4. Zyubin V. Using Process-Oriented Programming in LabVIEW // Proc. of the Second IASTED In-

tern. Multi-Conference on automation, control, and information technology: Control, Diagnostics,

and Automation. Novosibirsk, 2010. P. 35–41.

5. Randell B. Software Engineering Techniques // Report on a conference sponsored by the NATO

Science Committee. Brussels, Scientific Affairs Division, NATO, Rome, Italy, 1970. P. 16.

6. Liakh T.V., Rozov A.S., Zyubin V.E. Reflex Language: a Practical Notation for Cyber-Physical

Systems // System Informatics, No. 12. 2018. P. 85–104.

7. Norrish M. C formalised in HOL // Ph.D. thesis. University of Cambridge, Technical report,

UCAM-CL-TR-453, 1998.

8. Gurevich Y., Huggins J. The semantics of the C programming language // Lecture Notes in Com-

puter Science. 1993. Vol. 702. P. 274–308.

9. Blazy S., Leroy X. Mechanized semantics for the Clight subset of the C language // J. Autom.

Reasoning. 2009. Vol. 43, No. 3. P. 263–288.

10. Nepomniaschy V.A., Anureev I.S., Mikhailov I.N., Promsky A.V. Towards verification of C pro-

grams. C-light language and its formal semantics // Programming and Computer Science. 2002.

Vol. 28, No. 6. P. 314–323.

11. Ellison C., Rosu G. An Executable Formal Semantics of C with Applications // Proc. of the 39th

annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages. 2012. P.

533–544

12. Monniaux D. The pitfalls of verifying floating-point computations // ACM Transactions on Pro-

gramming Languages and Systems. 2008. Vol. 30, No. 3. P. 1–41.

13. Shilov N.V. On the need to specify and verify standard functions // The Bulletin of the Novosibirsk

10 Anureev I.S. Operational Semantics of Reflex

Computing Center, Series: Computer Science. 2015. Vol. 38. P. 105–119.

14. Shilov N.V., Promsky A.V. On specification and verification of standard mathematical functions

// Humanities and Science University Journal. 2016. Vol. 19. P. 57–68.

15. Shilov N.V., Anureev I.S, Kondratyev D., Promsky A.V. A summary of a case-study on platform-

independent verification of the square root function in fix-point machine arithmetic // Proc. of

9th Workshop "Program semantics, specification and verification: theory and applications" (PSSV

2018). 2018. P. 85-91.

System Informatics (Системная информатика), No. 14 (2019) 11

UDK 681.51, 004.05

Safety Analysis of Longitunal Motion Controllers during

Climb Flight

Baar T. (Hochschule für Technik und Wirtschaft (HTW) Berlin,

Department of Engineering I)

Schulte H. (Hochschule für Technik und Wirtschaft (HTW) Berlin,

Department of Engineering I)

During the climb flight of big passenger planes, the pilot directly adjusts the pitch

elevator and the plane reacts on this by changing its pitch angle. However, if the pitch

angle becomes too large, the plane is in danger of an airflow disruption on the wings, which

can cause the plane to crash. In order to prevent this, modern planes take advantage of

control software to limit the pitch angle. However, if the software is poorly designed and if

system designers have forgotten that sensors might yield wrong data, the software might

cause the pitch angle to become negative, so that the plane loses height and can - eventually

- crash.

In this paper, we investigate on a model for a Boeing passenger plane how the control

software could look like. Based on our model described in Matlab/Simulink R©, it is easy

to see based on simulation that the plane loses height when the sensor for the pitch angle

provides wrong data. For the opposite case of a correctly functioning sensor, our simulation

does not indicate any problems. This simulation, however, is not a guarantee that the

control is indeed safe. For this reason, we translated the Matlab/Simulink R©-model of

the controler into a hybrid program in order to make this system amenable to formal

verification using the theorem prover KeYmaera.

Keywords: Cyber-Physical System (CPS), Formal Safety Analysis, Hybrid Automaton

1. Flight Control Model of Longitudinal Motion

For a complete description of the aircraft motion in the three dimensional space six variables

are needed that denote the degrees of freedom of a rigid body. The aircraft motion is calculable

by six nonlinear coupled ordinary differential equations (ODEs) of these variables. However,

under certain assumptions, the ODEs can be decoupled and linearized into longitudinal and

lateral equations. It is common practice to derive a third order state space model with the

12 Baar T., Schulte H. Safety Analysis of Longitunal Motion Controllers during Climb Flight

state vector

x = [α q θ]T (1)

to describe the longitudinal motion [4], [5]. The state vector contains (1) the angle of attack

α, pitch rate q, and pitch angle θ (cmp. Fig. 1).

Fig. 1. Important parameters of Flight Model

(Source: http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch

§ion=SystemModeling)

Based on the assumption that the aircraft is in steady-cruise at constant altitude and velocity

and that a change in the elevator deflection angle δ as controllable system input will not change

the aircraft speed the longitudinal equations of motion for the aircraft in state space form

ẋ = f(x, u) with the state vector (1) and the input u := δ can be written as

α̇ = µΩσ
[
− (CL + CD)α +

1

(µ− CL)
q − (CW sin γ)θ + CL

]
(2)

q̇ =
µΩ

2Iyy

([
CM − η(CL + CD)

]
α +

[
CM + σCM(1− µCL)

]
q + (ηCW sin γ)δ

)
θ̇ = Ωq

where

Ω =
2U

c̄
, µ =

ρSc̄

4m
, σ =

1

1 + µCL

, η = µσCM , (3)

with the equilibrium flight speed U and γ as the flight path angle. The parameter ρ denotes the

density of air, S denotes the platform area of the wing, c̄ denotes the average chord length and

m denotes the mass of the aircraft, CW denotes the coefficient of weight, CM denotes coefficient

of pitch moment, and Iyy as the normalized moment of inertia. The aerodynamic coefficients

System Informatics (Системная информатика), No. 14 (2019) 13

of thrust, drag and lift are CT , CD, CL. Based on the above assumptions, the dynamics of the

aircraft around a stationary operating point pc = (αc, qc, θc, δc) for an equilibrium flight speed

is obtained by Taylor linearization of f(x, u)

A =
∂f

∂x
|pc =

−0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0

 , B =
∂f

∂u
|pc =

0.232

0.0203

0

can be described as follows

α̇ = −0.313α + 56.7 q + 0.232 δ

q̇ = −0.0139α− 0.426 q + 0.0203 δ

θ̇ = 56.7 q

1.1. Control loop designed in Matlab/Simulink R©

For the flight model introduced above, we have developed using Matlab/Simulink R© a series

of controllers those aim is to keep the pitch angle θ below a maximum value θmax to prevent

airflow disruption at the wings. We have selected the period of a climb flight and assume, that

the pilot selects a constant δman as manual input, what might cause pitch angle θ to increase.

If θ becomes greater than an upper bound, the anti-stall mode is activated and the controller

computes a corrective δcorr to prevent airflow disruption. When - as a consequence - θ falls

again below a lower bound (due to hysteresis, the lower bound is slightly different from upper

bound), the anti-stall mode is switched off again and the pilot’s δman become again the input

for the plane.

Fig. 2. Simple P-Controller designed in Matlab/SimulinkR©

14 Baar T., Schulte H. Safety Analysis of Longitunal Motion Controllers during Climb Flight

A very simple version of the Matlab/Simulink R©-controller is shown in Fig. 2 and consists

of four main parts: (1) state space aircraft model, (2) computation of anti-stall mode, (3)

computation of δcorr (4) selection of δ from δman, δcorr based on anti-stall mode.

1.2. System analysis in Matlab/Simulink R©

The standard technique to analyze systems is by simulation, which is well-supported by

Matlab/Simulink R©.

1.2.1. Assuming correct sensor measuring for θ

The pitch angle θ is one of the outputs of the plant model and the input for the control loop.

Based on θ, the input δ (pitch elevator angle) is computed for the next cycle.

Assuming that the angle θ is correcly measured by sensors, the simulation of the system

does not show any situation in which θ becomes negative. This alone is not yet a guarantee,

that this never happens but it is already a good starting point for formal verification of the

system’s safety (cmp. Sect. 2).

1.2.2. Assuming incorrect sensor measuring for θ

When building safety critical systems, engineers should always take into account that sensors

might provided wrong data. We have modeled in a second Matlab/Simulink R©-model a faulty

sensor just by substituting the output θ of the plant model by θ + θoffset. When simulating

this second model, it can be immediately seen, that θ becomes soon negative, i.e. the plane can

lose height.

2. Logical Analysis of Flight Control Models

As detailed in the previous section, the Matlab/Simulink R© toolkit is able to simulate the

modeled system and it is easy to see, that the plane might lose height when sensors for measuring

θ provide wrong data. However, for the opposite case of having a (presumably) correct system,

simulation is not a sufficient technique in order to prove that the system behaves correctly

under all possible circumstances. In our case, the correct behaviour means that θ remains

always positive (recall that our system models the phase of a climb flight).

In this section, we present a translation of the Matlab/Simulink R© model into a hybrid

program (HP), a notion similar to well-known hybrid automata [2]. The notion of HP is

supported by the theorem prover KeYmaera, which enables the user to formally verify safety

System Informatics (Системная информатика), No. 14 (2019) 15

properties of hybrid systems [3].

2.1. KeYmaera

A proof task for KeYmaera has to be formulated in differential dynamic logic (DDL), which

is an extension of classical dynamic logic [1]. In short, classical dynamic logic is a modal logic

with modalities box ([α]ψ) and diamond (< α > ψ). In the rest of the paper, only the box-

modality is applied; the formula [α]ψ states that in each possible poststate after program α has

terminated the formula ψ holds. Please note that termination of α is not claimed!

The main difference of DDL and DL is, that the former supports continuous state statements,

in which variables changes its value automatically according to differential equations. This list

of supported statements is summarized in the following table1. For a detailed introduction to

DDL, the interested reader is referred to [3].

2.2. Flight model as KeYmaera-Input

The Matlab/Simulink R©-model shown in Fig. 2 can be translated into a hybrid program α

as follows:

1The table has been taken from [3].

16 Baar T., Schulte H. Safety Analysis of Longitunal Motion Controllers during Climb Flight

α =

{

if theta > upper_theta_bound //adjust the mode

then stallCtrl_mode := 1

else if theta < lower_theta_bound

then stallCtrl_mode := 0

else skip

endif

endif ;

delta_stall := (thetad − theta) ∗ kp ∗ stallCtrl_mode;

delta := delta_stall + delta_manual ∗ (1− stallCtrl_mode);

t := 0;

{ alpha′ = −0.313 ∗ alpha+ 56.7 ∗ q + 0.232 ∗ delta,

q′ = −0.0139 ∗ alpha+−0.426 ∗ q + 0.0203 ∗ delta,

theta′ = 56.7 ∗ q,

t′ = 1

& t <= ep

}

}∗

Here, the control loop of the Matlab/Simulink R©-model is encoded by an iteration (*) as

the outermost operator of α. Within the iteration, we have basically a sequence (cntrl; plant),

where plant is the continuous state statement {alpha′ = . . .&t <= ep} and cntrl is the sequence

of statements before.

The statement plant directly corresponds to part (1) from Fig. 2. The statements forming

cntrl realize the parts (2), (3), (4) from Fig. 2.

2.3. Proof task for correct behaviour

We can now formally formulate the safety property we would like to show for hybrid program

α:

θ > 0→ [α]θ > 0 (4)

In words, (4) reads as: whenever the system (including its controller) is started in a situation

System Informatics (Системная информатика), No. 14 (2019) 17

in which the pitch angle is positive, then after every control loop (which takes mostly time ep),

the pitch angle remains positive. Note, that the proof of this claim will rely on some other

assumptions, e.g. ep > 0, which have been suppressed here for the sake of brevity.

3. Conclusion and Future Work

In this paper, we have investigate safety critical software for controlling the flight of modern

aircrafts. Such control software is usually developed using tools such as Matlab/Simulink R©. We

present a possible controller for the computation of the pitch elevator angle, but this controller

has been completely designed by ourselves. Its sole purpose is to provide an example at which

quality assurance techniques can be applied.

For the controller of our example, we review two main safety properties: Does the controller

effectively prevent airflow disruption, which is the main purpose of the controller. However,

there is another safety property, which can be easily overlooked when plane software is hastily

developed: Is it possible that the controller software could cause the plane to lose height, which

- eventually - might cause the plane to crash.

The simulations of our controller suggest, that both safety properties are met. However and

not surprisingly, the controller can cause plane crashes when the sensor measuring the pitch

angle θ does not provide correct data.

For the case that the sensor works correctly, we propose to translate the Matlab/Simulink R©-

model into a hybrid program and to apply the theorem prover KeYmaera in order to ensure for

all possible situations that the system works correctly (not only for the few situations captured

by the simulation).

Unfortunately, establishing such a formal proof using KeYmaera is a non-trivial task, because

techniques for traditional software verification (e.g. case distinction for if-then-else) have to be

combined with mathematical analysis methods for ordinary differential equations (ODEs). We

will continue to work to formulate the key arguments of the proof so, that they can be processed

by KeYmaera easily.

References

1. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Foundation of Computing.

MIT Press, 2000.

2. Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE

18 Baar T., Schulte H. Safety Analysis of Longitunal Motion Controllers during Climb Flight

Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30,

1996, pages 278–292. IEEE Computer Society, 1996.

3. Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and André Platzer. How to

model and prove hybrid systems with KeYmaera: A tutorial on safety. STTT, 18(1):67–91,

2016.

4. Robert F. Stengel. Flight Dynamics. Princeton University Press, 2004.

5. Thomas R. Yechout. Introduction to Aircraft Flight Mechanics. American Institute of Aero-

nautics & Astronautics, 2003.

System Informatics (Системная информатика), No. 14 (2019) 19

UDK 004.822, 681.51

Constructing Verification-Oriented

Domain-Specific Process Ontologies∗

Natalia O. Garanina (A.P. Ershov Institute of Informatics Systems, Institute of

Automation and Electrometry)

Igor S. Anureev (A.P. Ershov Institute of Informatics Systems, Institute of

Automation and Electrometry)

Vladimir E. Zyubin (Institute of Automation and Electrometry, Novosibirsk

State University)

User-friendly formal specification and verification of concurrent systems from various

subject domains are active research topics due to their practical significance. In this pa-

per, we present the method for development of verification-oriented domain-specific process

ontologies which are used to describe concurrent systems of subject domains. One of advan-

tages of such ontologies is their formal semantics which makes possible formal verification

of described systems. Our method is based on the verification-oriented process ontology.

For constructing a domain-specific process ontology, our method uses techniques of se-

mantic markup and pattern matching to associate domain-specific concepts with classes of

the process ontology. We give detailed ontological specifications of these techniques. Our

method is illustrated by the example of developing a domain-specific ontology for typical

elements of automatic control systems.

Keywords: process ontology, pattern matching, semantic markup, automatic control

system, formal verification

1. Introduction

Our long-term goal is a comprehensive approach to supporting formal verification of con-

current systems for ensuring their quality by formal methods. The solution includes methods

for extracting formal models and properties of concurrent systems from the texts of technical

documentation, as well as, instruments for manual correction of the extracted information and

enriching it with new entities.

∗The research has been supported by the Russian Ministry of Education and Science and the Russian Foundation for Basic

Research (grants 17-07-01600, 19-07-00762).

20 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Our envisaged intellectual system for supporting formal verification of concurrent systems

will automatically extract and generate system requirements. We developed an Ontology of

Specification Patterns as a first step towards creating this system [1]. Another key component

of the system is the Process Ontology for concurrent systems [2]. The content of these ontolo-

gies, i.e. the sets of instances of their classes, are ontological descriptions of some concurrent

system and requirements for it. These descriptions can be extracted from corpus of technical

documentation by our system of information extraction from natural language text [3–5]. Such

descriptions also can be developed by special editors which also can be used for correction of

extracted information. These ontological descriptions for concurrent system processes and re-

quirements are the basis for formal verification of the concurrent system because the Ontology

of Specification Patterns and the Process Ontology have formal semantics. To verify a system, it

is necessary first to choose a suitable verifier (model checker, in particular) taking into account

the formal semantics of the ontology-based requirement presentation. If it exists, we translate

the ontological description of the system into the model specification input language of the

chosen verifier, and the requirements’ description is translated into the property specification

input language of this verifier (usually, this language is some temporal logic). Dealing with

requirements in our system involves not only the formal semantics of specification patterns,

but also the presentation of requirements both in a natural language and in a graphical form.

In this paper, we address both the problem of extracting a concurrent system description

from technical documentation and developing editor for constructing and correcting the onto-

logical description of concurrent systems. These tasks use the Process Ontology, which describes

concurrent systems as consisting of communicating concurrent processes characterized by local

and shared variables, and channels for communication by messages. This ontology has formal

semantics based on labelled transition systems [2]. However, for requirement and verification

engineers, the Process Ontology is very abstract to be suitable for supporting formal verification

with our system.

Since this support system can be used for different subject domains, it is necessary to

develop a method to specialize our abstract Process Ontology for specific subject domains

in order to construct domain-specific processes instances which have variables and channels

corresponding to their subject specialization. For example, in a concurrent system from the

domain of Automatic Control System, the sensor-process must necessarily be connected by at

least one communication channel with the process-controller. We must construct a Domain-

System Informatics (Системная информатика), No. 14 (2019) 21

Specific Process Ontology to be a special case of the Process Ontology. Hence, this new ontology

has formal semantics which makes possible formal verification of the systems it describes.

A Domain-Specific Process Ontology differs from the original Process Ontology in a set

of axioms and rules that specify domain-specific restrictions on the attributes of the Process

Ontology classes. This set of axioms has a declarative character. Ontology axioms can be used

to check integrity and consistency of the ontology content. In case of the ontological concurrent

system representation, integrity and consistency mean that instances of the ontology processes

corresponding to processes of the subject domain have all necessary variables, channels and

actions.

The declarative aspect of an ontology of domain-specific processes is suitable for checking

the correctness of descriptions of already created or extracted concurrent systems. But for

creating or correcting such a system, a constructive approach based on patterns of domain-

specific processes is better. In this paper, we propose the method of constructing the domain-

specific content of the Process Ontology using domain-specific patterns. The construction of

this content includes several steps. First, we enrich classes of the Process Ontology (Section

2) with semantic markup attributes containing a string description of terms from a subject

domain. The resulting new ontology called Semantically-Marked Process Ontology (Section 3)

allows us to construct the domain-specific content of the Process Ontology. Then, patterns of

domain-oriented processes are defined as instances of the Process-Oriented Semantic-Markup

Patterns Ontology (Section 4). We illustrate our method with the example from the subject

domain of Automatic Control Systems (Section 5). Development of the process ontology for

this domain is especially important because a user-friendly formal specification and verification

of automatic control systems, and, in general, cyber-physical systems have crucial practical

significance.

2. Process Ontology

We consider an ontology as a structure, which includes the following elements: (1) a finite

non-empty set of classes, (2) a finite non-empty set of data attributes and relation attributes,

and (3) a finite non-empty set of domains of data attributes. Each class is defined by a set

of attributes. Data attributes take values from domains, and relation attributes’ values are

instances of classes. An instance of a class is defined by a set of attribute values for this class.

A content of an ontology is a set of instances of its classes.

22 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Fig. 1. Process Ontology.

The Process Ontology PO provides an ontological description of a concurrent system by

a set of its instances. We consider a concurrent system as a set of communicating processes.

Processes (described by the class Process) are characterized by sets of local and shared variables;

a list of actions on these variables which change their values; a list of channels for the process

communication; and a list of communication actions for sending messages. The process variables

(the class V ariable) and constants (the class Constant) take values in domains of basic types

(Booleans, finite subsets of integers or strings for enumeration types) and finite derived types.

Initial conditions of the variable values can be defined by comparison with constants. The

actions of the processes (the class Action) include operations over variables’ values. The enable

condition for each action is a guard condition (the class Condition) for the variable values

and the content of the channels. The processes can send messages through channels (the class

Channel) under the guard conditions (the class Condition). The communication channels are

characterized by the type of reading messages, capacity, modes of writing and reading, and

reliability. Figure 1 represents the Process Ontology. Classes are presented by white ovals.

Relations between classes are shown as dashed arrows with names in grey ovals. These arrows

are solid if the relation is one-to-many, and dotted, if the relation is one-to-one. Class data

attributes placed in dash-dot rectangles are connected with their classes by dash-dot arrows.

Classes of PO are universal because they do not take into account the features of a subject

domain. In the next section, we define an extension of ontology PO — a semantically-marked

System Informatics (Системная информатика), No. 14 (2019) 23

process ontology that specifies necessary information about the subject domain.

3. Semantically-Marked Process Ontology

In this section, we formally describe our method of the semantic markup of the Process

Ontology. This markup is used for matching the abstract processes of PO to specific processes

of a chosen subject domain. The marking up is performed by enriching the classes of ontology

PO with string labels corresponding to the concept of the subject domain. This classes with

several service classes form the new semantically-marked process ontology. The instances of the

subject domain processes can be constructed using this new ontology and the Process-Oriented

Semantic-Markup Patterns Ontology described in the next section,

The semantically-marked process ontology (SMPO) contains domains Classes, Domains,

Types, V alues corresponding to elements of PO ontology, domains SLabel, SAttribute, classes

AV alue, Element and Element_T (T ∈ Domains) corresponding to semantic labelling, and

classes of ontology PO enriched with semantic attributes based on listed new domains and

classes.

Domains Classes and Domains include names of classes and domains from ontology PO.

Domain Types = Classes ∪Domains includes all names from ontology PO. Domain V alues

includes all attribute values of PO: V alues = ∪T∈TypesV al(T), where V al(T) is values of T ,

which are instances for T ∈ Classes and the corresponding values for T ∈ Domains.

Domain SLabel is a finite set of semantic labels which are strings. String labels specify

information associated with the attribute values of ontology PO. This information can be

about a subject domain (ex., "sensor" or "pressure") or special features of modeling processes

(ex., "periodic start").

Domain SAttribute is a finite set of semantic attributes which are string. Like labels, these

semantic attributes specify subject domain information associated with the attribute values

of ontology PO. The difference is that strings of the semantic attributes must be a string

description of the attribute values of ontology PO (ex., "100", "true" or "instance of class

Controller").

Further in class definitions, we add a superscript ∗ for multi-valued attributes and superscript

1 for mandatory single-valued attributes. Class AV alue (which instances are called attribute

values) has two single-valued attributes: Attribute1 with values in SAttribute and V alue1 with

values in V alues which specify the name of a semantic attribute and its value.

24 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Сlass T of ontology SMPO is some class of ontology PO enriched with two attributes:

SLabels∗ with values in SLabel and SAattributes∗ with values in AV alue (called marking

attributes) which add the semantic markup to instances of class T . This attributes connect

abstract notions of Process Ontology with a chosen subject domain. Attribute SLabels specifies

a set of semantic labels. Attribute SAttributes specifies a set of semantic attributes with their

values. Attribute SAttributes cannot contain two instances of class AV alue with the same

value of attribute Atrribute for unambiguity of naming values in ontology PO. Attributes of

T without the markup are called base attributes.

Сlass Element_T is constructed for each domain T ∈ Domains. This class has the marking

attributes and attribute V alue1 with values in T . Attribute V alue specifies a value, and the

marking attributes add the semantic markup to this value. Thus, in ontology SMPO, values

of PO domains can be marked up.

Class Element has only the marking attributes SLabels∗ and SAattributes∗. This class

models new semantic classes (classes defined only by the semantic markup) in ontology SMPO.

New semantic classes is used to construct new subject-oriented classes for ontology of processes

in specific domains. This classes are used just for a readable description of a subject domain.

They must be transformed to elements of ontology PO.

We illustrate addition of information about a subject domain to elements of ontology PO

using the example of a sensor measuring temperature in degrees Celsius in the range from 0 to

1000. This sensor is specified by the following instance of class Process of SMPO ontology:
Process(BAVs , SLabels :{"sensor"},
SAttributes :{ AValue (Attribute:"Dimension", Value:"temperature"),
AValue(Attribute:"unit", Value:"Celsius"),
AValue(Attribute:"range",
Value:Element(SLabels :{"range"},
SAttributes :{ AValue(Attribute:"left", Value:"0"),
AValue(Attribute:"right", Value:"1000")})})

Listing 1: Sensor instance

Here the tuple T (A1 : V1, . . . , An : Vn) denotes an instance of class T with values V1, ..., Vn of

attributes A1, ..., An, the set {V1, . . . , Vn} lists values of a multi-valued attribute, and BAV s

are base attributes from ontology PO.

Thus, with ontology SMPO we can describe instances of notions from a subject domain

by the semantic markup. However, this ontology is not enough to specify subject notions as

elements of concurrent systems, i.e., to specify restrictions on sets of their instances. In the

next section, we define a process-oriented ontology of semantic-markup patterns. This ontology

is used to define notions of some subject domain using patterns by imposing restrictions on

System Informatics (Системная информатика), No. 14 (2019) 25

instances of classes of ontology SMPO (what semantic markup can be added to them), as well

as the arity and values of their attributes (the number of values of the attributes and what

semantic markup can be added to these values).

4. Process-Oriented Semantic-Markup Patterns Ontology

Process-oriented semantic-markup patterns ontology (POSMPO) includes domains and

classes of ontology SMPO, domainsAMatchSizes andAMatchOperations, and classAMatch.

Let n, m be nonnegative integers. Domain AMatchArities = {”m”, ”m|0”,

”mn”, ”mn|0”, ”m − ”, ”m − |0”, ” − n”} is used for restrictions on the number of attribute

values of an ontology element matched with a pattern.

Domain AMatchOperations = {"=", "<", "<=", "!=", ">", "=>", "in", "oneof", "all"} is

a set of matching operations. They specify which values of ontology SMPO must be matched

to each other. The set of values of this domain can be extended for a specific subject domain.

Instances of POSMPO classes are called semantic-markup patterns. Each pattern specifies

a set of SMPO instances matching with this pattern. Class T of ontology POSMPO has

the same attributes as class T of ontology SMPO, but they have values in AMatch. Class

AMatch specifies the rules for matching attribute values of SMPO classes with patterns for

them. This class has the following attributes: Ar with values in AMatchArities, Op with values

in AMatchOperations and Pat∗ with values in V alues[SMPO] which contains all values of all

attributes of all SMPO classes similarly to domain V alues based on ontology PO. Attribute

Ar restricts the number of matched values. Attribute Op defines the matching operation.

Attribute Pat specifies patterns for attribute values.

Let V.A denote the value of attribute A of instance V , and |S| denotes the power of set S.

We consider that instance V of class T from ontology SMPO is matched with pattern P of

class T from ontology POSMPO iff for each attribute A of P such that P.A = AMatch(Ar :

R,Op : O,Pat : V1, . . . , Vn) the following holds:

1. If R = ”m” then |V.A| = m.

2. If R = ”m− ” then |V.A| ≥ m.

3. If R = ”−m” then |V.A| ≤ m.

4. If R = ”m− k” then k ≤ |V.A| ≤ m.

5. If R = ”m|0” then |V.A| = m or |V.A| = 0.

6. If R = ”m− |0” then |V.A| ≥ m or |V.A| = 0.

26 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

7. If R = ”m− n|0” then n ≤ |V.A| ≤ m or |V.A| = 0.

8. If O = ” = ” then n = 1 and V ′ = V1 for each V ′ ∈ V.A. The cases when O ∈ {” = ”, ” <

”, ” <= ”, ”! = ”, ” > ”, ” > ”} are defined similarly. This case restricts comparable

attribute values.

9. If O = ”in” then n = 1 and V ′ ∈ V1 for each V ′ ∈ V.A. This case defines membership of

attribute values.

10. If O = ”oneof” then V is matched with upd(P,A, Vi) for some 1 ≤ i ≤ n, where

upd(Q,B,U) denotes the result of setting the value U to attribute B of instance Q. This

case chooses some pattern value for the attributes.

11. If O = ”all” then there are S1, ..., Sn such that V.A = {S1, . . . , Sn}, Si ∩ Sj = ∅ for

Si 6= ∅, Sj 6= ∅, and upd(V,A, Si) is matched with upd(P,A, Vi) for each 1 ≤ i ≤ n. This

case chooses all pattern values for the attributes.

12. If O is undefined, and A 6= SLabels, or T = AV alue and A 6= Attribute, then V ′ is

matched with P.A for each V ′ ∈ V.A. This case reduces matching set of attribute values

to matching separate attribute values of the set. The remaining cases are special ones for

classes SLabels, AV alue и SAttributes.

13. If O is undefined and A = SLabels then P.SLabels ⊆ V.SLabels.

14. If O is undefined, T = AV alue, A = Attribute then n = 1, and V.A = V1.

15. If O is undefined and A = SAttributes then attributes(P.SAttributes) =

attributes(V.SAtributes), where attributes(AV) is the set of attributes in instance AV

of class AV alue.

We have defined a process-oriented ontology of semantic-markup patterns which combines

the Process Ontology with descriptions of notions of a subject domain. A particular set of

instances of this ontology gives the rules for constructing the corresponding subject-oriented

process ontology. Classes and domains of POSMPO provide a language for constructive us-

ing axioms which restrict abstract processes of PO with respect to a subject domain because

these axioms can specify only numbers of attribute values and their ranges. In the next sec-

tion, we construct some typical elements of Automatic Control Systems (ACSs) using classes

POSMPO.

5. Domain-Specific Process Ontology for Typical Elements of

Automatic Control Systems

System Informatics (Системная информатика), No. 14 (2019) 27

In this section, we define semantic-markup patterns for typical elements of automatic control

systems: simple and complex sensors, controllers, actuators and the controlled object.

Simple and complex sensors, and related entities are defined by patterns in Listing 2.

Process(// Simple sensor
Local:AMatch("0"),
SharedRead:AMatch("1", Variable(SLabels :{"Observed value"})),
SharedWrite:AMatch("0"),
Actions:AMatch("0"),
Channels:AMatch("1-",
Channel(SLabels :{"Channel from sensor to controller"})),
ComActs:AMatch("1-", ComAction(SLabels :{"Sending observed value from simple sensor"})),
SLabels :{"Simple sensor"},
SAttributes: {AValue("Physical quantity",
Element(SLabels :{"Physical quantity"})})

Element(// Physical quantity
SLabels :{"Physical quantity"},
SAttributes: {AValue("Dimension", AMatch(Op:"in", Pat:Dimension)),
AValue("Unit", AMatch(Op:"in", Pat:Unit)),
AValue("Range", Element{SLabels :{"Range"}})})

Element(// Range
SLabels :{"Range"},
SAttributes: {AValue("Left", AMatch(Op:"in", Pat:Float)),
AValue("Right", AMatch(Op:"in", Pat:Float))})

Variable(// Observed value
Users:AMatch(Op:"all",
Pat:{ AMatch("1", Process(SLabels :{"Controlled Object"})),
AMatch("1-", Process(SLabels :{"Simple sensor"}))}),
SLabels :{"Observed value"},
SAttributes: {AValue("Physical quantity",
Element(SLabels :{"Physical quantity"})})

Channel(// Channel from sensor to controller
From:AMatch("1", "oneof", {Process(Slabels :{"Simple sensor"}),
Process(Slabels :{"Complex sensor"})}),
To:AMatch("1-", Process(SLabels :{"Controller"})),
Type:AMatch("1", "=", "FIFO"),
Capacity:AMatch("1", "=", 1),
Write:AMatch("1", "=", "Old"),
Read:AMatch("1", "=", "Keep"),
Reliable:AMatch("1", "=", "true"),
SLabels :{"Channel from sensor to controller"})

ComAction(// Sending observed value from simple sensor
From:AMatch("1", Process(Slabels :{"Simple sensor"})),
To:AMatch("1-", Channel(SLabels :{"Controller"})),
Message:AMatch("1",
Expression(Op1:AMatch("1",
Variable(SLabels :{"Observed value"}))))
SLabels :{"Sending observed value from simple sensor"})

Process(// Complex sensor
SharedRead:AMatch("1-", Variable(SLabels :{"Observed value"})),
SharedWrite:AMatch("0"),
Channels:AMatch("1-",
Variable(SLabels :{"Channel from sensor to controller"})),
ComActs:AMatch("1-",
ComAction(SLabels :{"Sending message from complex sensor"})),
SLabels :{"Complex sensor"},
SAttributes: {AValue("Physical quantity",
Element(SLabels :{"Physical quantity"})})

ComAction(// Sending message from complex sensor
From:AMatch("1", Process(Slabels :{"Complex sensor"})),
To:AMatch("1-", Channel(SLabels :{"Controller"})),
SLabels :{"Sending message from complex sensor"})

Listing 2: Sensors

In this and the following listings, we use the following abbreviations: SLabels:S for SLabels:AMatch(

28 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

Value:S), AMatch(R, O, P) for AMatch(Ar:R, op:O, Pat:P), where R, O, or P can be omitted, AMatch(R, O, P) for

{AMatch(R, O, {P})}, AValue(A, V) for AValue(Attribute:A, Value:V), and T for AMatch(Op:"in", Pat:T).

These patterns impose the following restrictions on sensors. Sensors must read observed

values from variables shared with the controlled object and cannot change it. They must have

outgoing channels connecting them with controllers and communication actions for sending

messages to the controllers. There must be at least one controller and at least one shared

variable associated with each sensor. Simple sensors have no local variables and actions whereas

complex sensors have ones. Simple sensors can observe exactly one shared variable and send

the observed value unchanged to controllers. For sensors, processing physical quantities must

be defined. They are characterized by dimensions ("temperature", "pressure", "density", etc.), units

of measurement ("centimeter", "kilogram", "volt", etc.) and ranges.

Controllers, actuators and controlled objects are restricted by patterns in Listing 3.

Process(// Controller
SharedRead:AMatch("0"), SharedWrite:AMatch("0"),
Channels:AMatch("all",
{AMatch("1-", Channel(SLabels :{"Channel from sensor to controller"}),
AMatch("0-", Channel(SLabels :{"Channel from actuator to controller"},
AMatch("1-", Channel(SLabels :{"Channel from controller to actuator"},
AMatch("0-", Channel(SLabels :{"Channel from controller to controller"})}),
ComActs:AMatch("1-", ComAction(SLabels :{"Sending message from controller"})),
SLabels :{"Controller"})

Process(// Actuator
SharedRead:AMatch("0"), SharedWrite:AMatch("0"),
Channels:AMatch("all",
{AMatch("1-", Channel(SLabels :{"Channel from controller to actuator"}),
AMatch("0-", Channel(SLabels :{"Channel from actuator to controller"},
AMatch("1", Channel(SLabels :{"Channel from actuator to controlled object"})}),
ComActs:AMatch("1-", ComAction(SLabels :{"Sending message from actuator"})),
SLabels :{"Actuator"})

Process(// Controlled object
SharedRead:AMatch("0"),
SharedWrite:AMatch("1", Variable(SLabels :{"Observed value"})),
Channels:AMatch("1-", Channel(SLabels :{"Channel from actuator to controlled object"}),
ComActs:AMatch("0"),
SLabels :{"Controlled object"})

Listing 3: Controllers, actuators and controlled objects

Controllers and actuators must not have shared variables. Controllers must have output

channels connecting them with other controllers and actuators, and input channels connecting

them with sensors and actuators. Actuators must have output channels connecting them with

controllers and the controlled object, and input channels connecting them with controllers.

There must be at least one sensor and at least one actuator connected with a controller through

input and output channels, respectively. There must be at least one controller and the only

controlled object connected with an actuator through input and output channels, respectively.

The controlled object must be connected with actuators by input channels. There must be at

System Informatics (Системная информатика), No. 14 (2019) 29

least one shared variable, one sensor and one actuator associated with the controlled object.

Each pattern gives rules for defining an element of ACS in the Process Ontology. With a set

of such patterns, we can specify a system of concurrent processes implementing typical elements

of ACS. Thus, our method can be used to specify domain-specific processes.

6. Discussion and Conclusion

The method of developing a domain-specific process ontologies based on three core ontologies

[6] has several remarkable properties. Verification-oriented process ontology PO specifies a com-

pact universal process model with a labeled transition system as its formal semantics, which can

be used in formal verification methods and model checking, in particular. Semantically-marked

process ontology SMPO makes possible marking instances of PO classes for associating them

with concepts of a subject domain. Moreover, it is also possible to mark values of PO domains

and describe new domain-specific classes. Process-oriented semantic-markup patterns ontol-

ogy POSMPO specifies restrictions on the semantic markup of instances of SMPO classes,

defining the subject concepts associated with these instances. Unlike the declarative approach

describing a domain-specific process ontology by a set of axioms, this approach specifies the

ontology as a set of patterns (instances of ontology POSMPO) for defining domain-specific

processes constructively as instantiation of patterns from this set. All three ontologies are based

on simple concepts that can be used as ontology design patterns [7, 8].

In the future, we plan to add new kinds of matching operations (for example, the current

set of operations does not allow us to express the property that different attributes have the

same instance as a value), to refine the process ontology for automatic control systems and to

advance the method for building other domain-specific process ontologies.

References

1. Garanina, N., Zyubin, V., Lyakh, T., Gorlatch, S. An Ontology of Specification Patterns for

Verification of Concurrent Systems // Proc. of the 17th Intern. Conf. SoMeT-18. New Trends in

Intelligent Software Methodologies, Tools and Techniques. Series: Frontiers in Artificial Intelligence

and Applications, Amsterdam: IOS Press, 2018. Vol. 303. P. 515-528. DOI 10.3233/978-1-61499-

900-3-515.

2. Garanina N.O., Anureev I.S. Verification oriented process ontology // Proc. of 9th Workshop

"Program semantics, specification and verification: theory and applications" (PSSV 2018). 2018.

P. 58–67.

30 Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin Constructing Verification-Oriented Domain-Specific ...

3. Garanina N.O., Sidorova E.A., Bodin E.V. A Multi-agent Text Analysis Based on Ontology of

Subject Domain // Lecture Notes in Computer Science, 2015. Vol. 8974. P. 102–110.

4. Garanina N.O., Sidorova E.A. Context-dependent Lexical and Syntactic Disambiguation in Ontol-

ogy Population // Proc. of the 25th Intern. Workshop on Concurrency, Specification and Program-

ming (CS&P). Humboldt-Universitat zu Berlin, 2016. P. 101–112.

5. Garanina N.O., Sidorova E.A., Kononenko I.S., Gorlatch S. Using Multiple Semantic Measures For

Coreference Resolution In Ontology Population // Intern. Journal of Computing. 2017. Vol. 16.

No. 3. P. 166–176.

6. Scherp A., Saathoff C., Franz T., Staab S. Designing core ontologies // Applied Ontology, 2011.

Vol. 6. No. 3. P. 177–221.

7. Gangemi A., Presutti V. Ontology Design Patterns // Staab, S., Studer, R. (eds.) Handbook on

Ontologies. 2nd edn. Springer, 2009. P. 221–243.

8. Ontology design patterns. http://www.ontologydesignpatterns.org.

http://www.ontologydesignpatterns.org

System Informatics (Системная информатика), No. 14 (2019) 31

УДК 004.052.42

Towards automated error localization

in C programs with loops∗

Kondratyev D.A. (A.P. Ershov Institute of Informatics Systems SB RAS)

Promsky A.V. (A.P. Ershov Institute of Informatics Systems SB RAS)

The most recent trends in the C-light verification system are MetaVCG, semantic labels

appropriate for verification condition (VC) explanation and symbolic method of definite it-

erations. MetaVCG takes a C-light program together with some Hoare’s logic and produces

on-the-fly a VC generator (VCG), which in turn processes the input program. Hoare’s logic

for definite iterations is a good choice if we try to get rid of loop invariants. Finally, if

a theorem prover was unable to validate some VCs we could follow two ways. Obviously,

we could revise/enrich specifications or/and underlying proof theory to prove the truth

of VCs. Or, perhaps, we could concentrate upon establishment of falsity, which meant

there were errors in annotated program. This is where semantic labels play crucial role

providing some natural language comments about wrong VC as well as a back-trace to

the error location. The newly developed ACL2 heuristics to prove VC falsity is the main

theme of this paper.

Keywords: deductive verification, semantic label, error localization, C-light, automated

theorem proof, C-lightVer, ACL2, MetaVCG, symbolic method of verification of definite

iterations, proof strategy

1. Introduction

The C-light project [12] corresponds to the mainstream architecture of modern verification

systems. It uses translation into an intermediate language (here, C-kernel) allowing to smooth

over some hard corners of deductive verification. In order to improve efficiency we prefer

domain specific verification condition (VC) generation, which means different generators for

different program classes. Traditional approach implies manual reprogramming of VC generator

(VCG). Instead, we adapted the MetaVCG approach of Moriconi and Schwarts [13]. For a

given axiomatic system the MetaVCG automatically constructs an ordinary generator. The

C-lightVer system is the implementation of the C-light project.

Are there any verification problems that cannot be solved by a two-level scheme or by

∗This research is partially supported by RFBR grant 17-01-00789.

32 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

MetaVCG? Indeed, there are. The loop invariants, for example. Another approach adapted

in our project, so called symbolic verification of definite iterations [14], proposes solution for

certain class of cycles over data structures. The loop execution is modeled symbolically by

replacement function rep. Some results of such adaptation were discussed in [6, 8].

At the moment, the main theorem prover for C-light is ACL2 [5]. The classic induction

in ACL2 is not powerful enough to handle VCs with replacement function rep, so the proof

strategies are proposed in [8, 11].

The traditional deductive verification works ideally for a priori correct Hoare triple with

true VCs. If some VCs are false the user must analyze the prover signals to understand what

went wrong and to localize possible errors. An easy task for toy examples which becomes a

real problem for real programs. Denney and Fisher developed the semantic labeling approach

[3]. For every VC it provides the proof protocol (in axiomatic semantics) as well as localizing

information up to the level of separate terms. A natural language explanation can be generated

from such protocol. The MetaVCG approach allowed us to easily introduce semantic labels in

our axiomatic systems [6, 7, 12].

Now, after this background overview let us address the current problematic task, error

localization for programs with loops. And again, situation is clear when ACL2 is able to

discover truth or falsity. But often the answer is "unknown". Instead of trying to satisfy a VC

we can use some strategies to check unsatisfiability. Since all variables in ACL2 are implicitly

universally quantified, the existence quantifier appears in the negated VC. Thus, our previous

strategies [8, 11] fail here and we need revised ones. Another requirement — the unsat strategies

must work for loops with abrupt termination (i.e. in presence of break statement). Possible

solution of this problem is discussed in this paper.

Related work. Some proof strategies deserve mention. For example, the system ACL2(ml)

[4] bases upon two methods. The first one is proof pattern recognition by means of statistical

machine learning. The second one is symbolic searching for analogous lemma. However, the

underlying theories may vary deeply, so machine learning is not very suitable for VC proof.

The SL-resolution is another well-known strategy [10]. Its inherent problem consists in

necessary construction of useless resolvents. To oppose the growth of disjunct set the connection

graph method was proposed [15]. In comparison to it, our strategy aims at the structure of

literals, not disjuncts.

The goals of Constraint Logic Transformation project [2] remind ours. In the same time

System Informatics (Системная информатика), No. 14 (2019) 33

their strategies are suitable for predicate processing.

2. Methods used in C-light project

MetaVCG. The metagenerator takes proof rules and axioms as its input. Technically all

of them represent patterns to be matched against C code [9]. The pattern language incorpo-

rates the first order logics and the C grammar. Expressions can contain nonterminal symbols,

like uninterpreted predicate symbols or “fragment variables” [13] denoting code snippets. Af-

filiation of metadata with certain class in the pattern language is explicit [9]. For example,

construction any_code(S) can be matched against any sequence (including empty) of C state-

ments, construction any_predicate(P) can be matched against any predicate of specification

language. Let vector v = 〈v1 . . . vk〉. Let each exprj(1 ≤ j ≤ k) is result of replacement

of all occurrences of term vector_element in the expression expr by vj. Then construct

vector_substitution(T, vec, expr) denotes the simultaneous replacement of all occurrences

of each vj(1 ≤ j ≤ k) in the formula T by expression exprj.

Semantic labeling. The idea of Denney and Fischer [3] consists in adding of semantic labels

to the proof rules. Labels explain the result of rule application. We also use notation dtel, which

means that the term t is decorated with label l. Labels themselves take form c(o, n), where

c is a concept (the term role), o is a line range (in the source program) and n is an auxiliary

information.

In contrast to the original idea, the labels in our VCs form hierarchy more suitable to

explanation generation [6]. We perform the depth search in the label tree and for each label its

common text is expanded by corresponding pattern filled by line numbers. The text patterns

for every label concept are similar to the C format strings, they are also fed to MetaVCG.

In order to support arbitrary label concepts a special construction (label t c) was added

to the language of proof rules [7]. Here, t is a term decorated by label and c is a string (label

type).

Symbolic method for the definite iterations. Consider a program fragment of the form

for x in S do v := body(v, x) end, where S is a data structure, x is a variable of type

“element of S”, v is tuple of the loop variables excluding x, body represents the loop body which

does not alter x and terminates for every x ∈ S. The ways of modification of S are quite

restricted. The loop body can only contain assignments, the if statements (perhaps nested)

34 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

ant the break statements. We call such for loops definite iterations. Let v0 be the tuple

of values of variables from v at the loop entry point. Result of the whole definite iteration

can be expressed by replacement operation rep(v, S, body, n), where rep(v, S, body, 0) = v0,

rep(i, v, S, body) = body(rep(i− 1, v, S, body), si) for all i = 1, 2, . . . , n. If the break statement

was executed during the i-th iteration of the body, the whole definite iteration continues, though

v does not change anymore: ∀j(i ≤ j ≤ n) rep(i, v, S, body) = rep(j, v, S, body).

The MetaVCG allowed us to combine ideas of definite iterations and semantics labels in the

form of the following pattern:

{P} prog {(vector_substitution(Q, v,

(label rep_iter rep(n, v, S, body).vector_element))}

|- {any_predicate(P)} any_code(prog)

for(int_var(i) = 0; int_var(i) < int_var(n); int_var(i)++)

admissible_construct(i, n, v, S, body)

{any_predicate(Q)}

where admissible_construct(i, n, v, S, body) corresponds to an admissible body of definite it-

eration, int_var corresponds to an integer variable. The construct vector_substitution(Q, v,

rep(n, v, S, body).vector_element) denotes the simultaneous replacement of all occurrences

of each vt(1 ≤ t ≤ length(v)) in the formula Q by rep(n, v, S, body).vt. The recursive defini-

tion of admissible construct is described in [8]. The algorithms of matching these patterns and

program constructs have been implemented in the C-lightVer system [6–9]. The inference rule

for downward iteration is defined similarly.

Automated generation of replacement operation. The replacement operation genera-

tion is based on translation [8] of loop body constructs into ACL2. Consider, for example,

construction b∗:

(b ∗ (. . . (var expr) . . .) result)

Expression (var expr) denotes binding of variable var with the value of expression expr,

which may depend on previously bound variables. The value of b∗ is equal to value of result,

which also can depend on bound variables. Values of variables from v correspond to values of

members of structure fr of type frame. So, to model modification of some variable in v we

bind object fr with new object which differs from the old one in the corresponding field. The

abrupt termination is modeled by truth of boolean member loop-break of object fr. Instruction

System Informatics (Системная информатика), No. 14 (2019) 35

break is modeled by the following binding: ((when t) fr). Since condition when is true, such

binding interrupts current block b∗ and returns fr.

3. Proof strategy for formulas with replacement operation

The arguments of this strategy are implication ψ containing expression rep(n, ...) and the

premise φ.

In the beginning we try to prove formula

φ→ rep(n, . . .).loop-break (ψ-lemma-1)

by induction on n. If ACL2 succeeds, we add (ψ-lemma-1) to the underlying theory. This

lemma means that premise φ of implication ψ represents situation when the loop is abruptly

terminated. Then we try to prove ψ using (ψ-lemma-1) and induction on n.

If ACL2 failed to prove (ψ-lemma-1), we address to the formula

φ→ ¬rep(n, . . .).loop-break (ψ-lemma-2)

by induction on n. Again, if ACL2 validates (ψ-lemma-2) we add it to our theory in order to

be used in the proof of ψ.

This strategy resembles one described in [8]. Indeed, both of them use the value of loop-break

field. They are automatic. Finally, they are heuristics.

But differences also take place. First, this strategy is applied to any implication containing

rep, whereas strategy from [8] analyses program postconditions only. Second, the latter one

generates lemmas in the form of conjunction. The first conjunct is a VC and the second one

establishes equality of antecedent from postcondition to the value of loop-break. Thus, lemmas

generated in [8] have rather more complex structure.

4. UNSAT strategy for VCs

The argument ω of this strategy contains expression rep(n, . . .) and has the following form:

∀x1 . . . xn (φ1(x1 . . . xn)→ ψ1(x1 . . . xn)) ∧ . . . ∧ (φm(x1 . . . xn)→ ψm(x1 . . . xn))

In ACL2 all variables of ω are implicitly universally quantified. Note that every φi or ψi is

not forced to depend on all variables x1 . . . xn. But for simplicity we imply such dependence.

36 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

Now let us prove ¬ω:

(∃x1 . . . xn (φ1(x1 . . . xn) ∧ ¬ψ1(x1 . . . xn))) ∨ . . .∨

(∃x1 . . . xn (φm(x1 . . . xn) ∧ ¬ψm(x1 . . . xn)))

Let for each i(1 ≤ i ≤ m) Ti ≡ ∃x1 . . . xn (φi(x1 . . . xn) ∧ ¬ψi(x1 . . . xn)). To prove ¬ω it is

sufficient to prove an arbitrary Ti(1 ≤ i ≤ m). If we can find such Ti the answer of strategy is

VC is false. Otherwise, the answer is Unknown.

Now, to the proof of Ti. Obviously truth of formula

T ′i ≡ (∃x1 . . . xn φi(x1 . . . xn)) ∧ (∀x1 . . . xn(φi(x1 . . . xn)→ ¬ψi(x1 . . . xn)))

is sufficient to prove Ti. Let us denote subformula ∃x1 . . . xn φi(x1 . . . xn) as Ui and the right

subformula ∀x1 . . . xn(φi(x1 . . . xn)→ ¬ψi(x1 . . . xn)) as Vi. We need to prove both Ui and Vi.

The process begins with interactive proof of Ui. Admittedly, sounds like undesirable step

away from automated verification but the reasons are as follows. First, we use the weakest

precondition calculus [8]. Therefore, Ui cannot contain replacement operation. Only the spec-

ification functions that are known to user take place in Ui. Second, almost all automatic proof

assistants have problems with existence quantifier. Third, our heuristics rests upon hypothesis

of simple antecedents and complex consequents in implications that were generated by the wp-

calculus. Based on this assumption, we try to automatize a more complex proof of Vi. If user

cannot validate Ui we suppose that the whole Ti is false.

If user confirms Ui, the proof of Vi starts. There are two possibilities. First, Vi may be

free of function rep. We simply pass this universally quantified formula to ACL2. Second, Vi

contains expression rep(n, . . .). Anyway, since user does not know definition of rep, only the

automated attempts are possible. The break statement can cause some trouble here because

it complicates definition of rep. In this case, we address the strategy from Section 3.

5. Example

The goal of this experiment is to demonstrate execution of both strategies. This case study

is also described in our on-line repository [1]. We deliberately made an error in the following

function:

1. /*@ requires (0 < n) && (n <= len(a));

2. ensures (grt-eql-cnt(n, key, a) == 0 ==> \result == 0) &&

System Informatics (Системная информатика), No. 14 (2019) 37

3. (grt-eql-cnt(n, key, a) > 0 ==> \result == 1)

4. */

5. int grt_eql_key(int n, int key, int a[]){

6. int i, result = 0;

7. for (i = 0 ; i < n; i++){

8. if (a[i] < key){result = 1; break;}}

9. return result;}

We suppose the reader is familiar with ACSL format of specifications. The logical function

grt-eql-cnt counts the number of array elements greater or equal to key. Its definition is given

in Appendix A. The program should look for array element that is greater than or equal to key

and should return 1 or 0 according to the specification. Thus, the error is the use of operator <

instead of operator >= in if-condition of loop body. The result of intermediate translation into

C-kernel looks like:

5. int grt_eql_key(int n, int key, int a[]){

6. /* begin changes Dec3 1 7-8 */

7. auto int i;

8. auto int result = 0;

9. /* end changes */

10. for (i = 0 ; i < n; i++){

11. if (a[i] < key){result = 1; break;}}

12. return result;}

Note that neither specification nor definite iteration is modified by translator. The string

"begin changes Dec3 1 7-8" stores data for the error localization protocol [12]. Of course,

it did not appear because we knew about intentional error. It is inherent mechanism of our

translation stage. In this particular case it declares that translation rule Dec3 for declarations

[12] was used and strings 7-8 are its result. Due to the symbolic method VCG produces single

VC (vc-1):

38 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

∀n, key, a

((d0 < n ∧ n ≤ len(a)eass_pre(1) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧
dgrt-eql-cnt(n, key, a) = 0eass_post(2) →

ddrep(n, key, a, 0).resulterep_iter(10−11) = 0
eens_post(2)

)

∧

(d0 < n ∧ n ≤ len(a)eass_pre(1) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧
dgrt-eql-cnt(n, key, a) > 0eass_post(3) →

ddrep(n, key, a, 0).resulterep_iter(10−11) = 1
eens_post(3)

)

where IntArr is set of integral arrays. Function rep is defined in Appendix B. Semantic label

ass_pre denotes hypothesis from precondition, ass_pre denotes hypothesis from postcondi-

tion, ens_post denotes goal from postcondition, rep_iter denotes substitution of replacement

function [7]. As expected, vc-1 cannot be proved by SAT strategies, like those from [8, 11]. It

is time to use our UNSAT strategy.

Formula vc-1 is a conjunction of two implications. Each of them uses function rep. The

formula U1 for the first conjunct φ looks like:

∃n, key, a

0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧

grt-eql-cnt(n, key, a) = 0

Since the user knows definition of grt-eql-cnt, he can prove U1 in interactive mode. Therefore,

formula V1 for conjunct φ appears:

∀n, key, a
d0 < n ∧ n ≤ len(a)eass_pre(1) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧

dgrt-eql-cnt(n, key, a) = 0eass_post(2) →
ddrep(n, key, a, 0).resulterep_iter(10−11) 6= 0

eens_post(2)

This part of the proof is automatic. The presence of break in the loop body complicates

things, so strategy from Section 3 enters on the scene. The corresponding V1-lemma-1 is as

follows:

∀n, key, a

0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧

grt-eql-cnt(n, key, a) = 0→

rep(n, key, a, 0).loop-break

This lemma deserves further explanation. Since 0 < n, the loop body is executed at least once.

Amount of elements of a greater or equal to key is also zero. Thus, all elements in sub-array

System Informatics (Системная информатика), No. 14 (2019) 39

[0 : n − 1] are less than key. Control expression of the if statement contains wrong operator,

so for such array the break statement is executed. V1-lemma-1 was proved automatically in

ACL2 by induction on n and was added to the theory. Its lisp definition is given in Appendix

C.

Finally, execution of break means that result = 1. So, V1-lemma-1 contributes in automatic

proof of V1. The lips definition of V1 is given in Appendix D. As a result vc-1 is false and

explanation for V1 is produced. Let us consider this explanation.

This formula corresponds to lines 1-9 in function "grt_eql_key".

Its purpose is to show unsatisfiable case. Hence, given

- assumption that precondition from line 1 holds,

- assumption that postcondition hypothesis from line 2 holds,

ensure that postcondition goal from line 2

with substitution loop effect from lines 7-8 by rep

does not hold.

The error localization protocol [12] analyses semantic labels in V1 and results of UNSAT

strategy to generate the text above. Actually, labels in VCs contain string ranges of C-kernel

program. This is where the commented information about translation rules proves to be useful.

The location of possible error can be retranslated back to C-light program [12].

6. Conclusion

Many papers tend to demonstrate successful experiments avoiding the situation when verifi-

cation fails. To fill this gap we discussed here some ideas about error localization in the C-light

project. In case when the prover can confirm neither truth nor falsity, the traditional response if

straightforward. User tries to reinforce the underlying theory in attempt to successfully reprove

VCs. However, we do not discard bad scenario and simultaneously we try to check whether

VCs are actually false. Another point of our current interest is verification of loops with break

statement. We obtained some results in our experiments:

1. We devised the UNSAT strategy. It generates formula whose truth automatically im-

plies falsity of original VC. At the moment such formula involves either interactive and

automated proof.

2. We also propose the SAT strategy for VCs with operation rep. If abrupt termination of

the loop is described in formula premises, a corresponding lemma will be added to the

40 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

underlying theory.

These strategies are the new contribution relative to previous research [6–8, 11]. Based on

these methods, we conducted some experiments on error localization. We can also mention

successful verification [6, 8] of function asum from the interface BLAS. The more complex data

structures and the other functions from BLAS will be considered in future work.

References

1. Automated Error Localization in C Programs. URL: https://bitbucket.org/Kondratyev/verify-c-

light. Last accessed 30 Apr 2019.

2. De Angelis E., Fioravanti F., Pettorossi A., Proietti M.: Verification of Imperative Programs

by Constraint Logic Program Transformation // Electronic Proceedings in Theoretical Computer

Science. Vol. 129. P. 186–210.

3. Denney E., Fischer B. Explaining Verification Conditions // Lecture Notes in Computer Science.

B.: Springer-Verlag, 2008. Vol. 5140. P. 145–159.

4. Heras J., Komendantskaya E., Johansson M., Maclean E. Proof-Pattern Recognition and Lemma

Discovery in ACL2 // Lecture Notes in Computer Science. B.: Springer-Verlag, 2013. Vol. 8312.

P. 389–406.

5. Hunt W. A., Kaufmann M., Moore J. S., Slobodova A. Industrial hardware and software verification

with ACL2 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences. 2017. Vol. 375. No. 2104. Article Number 20150399.

6. Kondratyev D. Implementing the Symbolic Method of Verification in the C-Light Project // Lecture

Notes in Computer Science. Cham: Springer International Publishing AG, 2018. Vol. 10742. P.

227–240.

7. Kondratyev D.A. The extension of the C-light project using symbolic verification method of def-

inite iterations // XVII All-Russian Conf. of Young Scientists on Mathematical Modeling and

Information Technology. Computational technologies. 2017. Vol. 22. P. 44-59. (In Russian)

8. Kondratyev D. A., Maryasov I. V., Nepomniaschy V. A. The Automation of C Program Verification

by Symbolic Method of Loop Invariants Elimination // Modeling and Analysis of Information

Systems. 2018. Vol. 25. No. 5. P. 491–505. (In Russian)

9. Kondratyev D. A., Promsky. A. V. Developing a self-applicable verification system. Theory and

practice // Automatic Control and Computer Sciences. 2015. Vol. 49. No. 7. P. 445–452.

10. Kowalski R., Kuehner D. Linear Resolution with Selection Function // Artificial Intelligence. 1971.

Vol. 2. No. 3–4. P. 227–260.

11. Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A. Invariant Elimination of Definite Iterations

over Arrays in C Programs Verification // Modeling and Analysis of Information Systems. 2017.

Vol. 24. No. 6. P. 743–754.

12. Maryasov I. V., Nepomniaschy V. A., Promsky A. V., Kondratyev D. A. Automatic C Program

System Informatics (Системная информатика), No. 14 (2019) 41

Verification Based on Mixed Axiomatic Semantics // Automatic Control and Computer Sciences.

2014. Vol. 48. No. 7. P. 407–414.

13. Moriconi M., Schwarts R.L. Automatic Construction of Verification Condition Generators From

Hoare Logics // Lecture Notes in Computer Science. B.: Springer-Verlag, 1981. Vol. 115. P. 363–

377.

14. Nepomniaschy V.A. Symbolic method of verification of definite iterations over altered data struc-

tures // Programming and Computer Software. 2005. Vol. 31. No. 1. P. 1–9.

15. Siekmann J., Wrightson G. An Open Research Problem: Strong Completeness of R. Kowalski’s

Connection Graph Proof Procedure // Lecture Notes in Computer Science. B.: Springer-Verlag,

2002. Vol. 2408. P. 231–252.

A. The ACL2 definition of grt-eql-cnt

(define grt-eql-cnt ((n integerp) (key integerp) (a integer-listp))

:guard-hints (("Goal" :induct (dec-induct n)))

:returns (result natp :hints (("Goal" :induct (dec-induct n))))

(b* ((n (nfix n))

(key (ifix key))

(a (integer-list-fix a))

((when (zp n)) 0)

((when (< (len a) n)) 0))

(if (<= key (nth (- n 1) a))

(+ 1 (grt-eql-cnt (- n 1) key a))

(grt-eql-cnt (- n 1) key a)))

///

(fty::deffixequiv grt-eql-cnt))

Due to recursive nature of grt-eql-cnt, induction is preferable when it comes to the proof of

statements containing this function.

B. The ACL2 definition of function rep

(fty::defprod frame ((loop-break booleanp) (i integerp) (result integerp)))

(fty::defprod envir ((lower-bound integerp) (key integerp) (a integer-listp)))

(define frame-init ((i integerp) (result integerp))

:returns (fr frame-p)

(make-frame :loop-break nil

:i i

:result result)

///

42 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

(fty::deffixequiv frame-init))

(define envir-init ((lower-bound integerp) (key integerp) (a integer-listp))

:returns (env envir-p)

(make-envir :lower-bound lower-bound

:key key

:a a)

///

(fty::deffixequiv envir-init))

(define rep ((iteration natp) (env envir-p) (fr frame-p))

:measure (nfix iteration)

:verify-guards nil

:returns (upd-fr frame-p)

(b* ((iteration (nfix iteration))

(env (envir-fix env))

(fr (frame-fix fr))

((when (zp iteration)) fr)

(fr (rep (- iteration 1) env fr))

((when (frame->loop-break fr)) fr)

(fr (if (< (nth

(- (+ iteration (envir->lower-bound env)) 1)

(envir->a env))

(envir->key env))

(b* ((fr (change-frame fr :result 1))

(fr (change-frame fr :loop-break t))

((when t) fr)) fr)

(b* ((fr fr)) fr)))

((when (frame->loop-break fr)) fr)

(fr (change-frame fr

:i (+ iteration (envir->lower-bound env)))))

fr))

C. The ACL2 definition of V1-lemma-1

(defrule v-1-lemma-1

(implies (and (< 0 n) (<= n (len a)) (integerp n) (integerp key) (integer-listp a)

(= 0 (grt-eql-cnt n key a)))

(frame->loop-break

(rep n (envir-init 0 key a) (frame-init 0 0))))

:enable (grt-eql-cnt envir-init frame-init rep)

:hints (("Goal" :induct (dec-induct n))))

Construction of the form

System Informatics (Системная информатика), No. 14 (2019) 43

:hints (("Goal" :induct (dec-induct n)))

prompts ACL2 to use induction on n.

D. The ACL2 definition of lemma V1

(defrule v-1

(implies (and (< 0 n) (<= n (len a)) (integerp n) (integerp key) (integer-listp a)

(= 0 (grt-eql-cnt n key a)))

(not (= (frame->result

(rep n (envir-init 0 key a) (frame-init 0 0))) 0)))

:enable (grt-eql-cnt envir-init frame-init rep v-1-lemma-1)

:hints (("Goal" :induct (dec-induct n))))

44 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

System Informatics (Системная информатика), No. 14 (2019) 45

UDK 004.052.42

Proving properties of Discrete-Valued Functions using

Deductive Proof: Application to the Square Root

Todorov V. (Groupe PSA, France)

Taha S. (LRI, CentraleSupélec, Université Paris-Saclay, France)

Boulanger F. (LRI, CentraleSupélec, Université Paris-Saclay, France)

Hernandez A. (Groupe PSA, France)

For many years, automotive embedded systems have been validated only by testing. In

the near future, Advanced Driver Assistance Systems (ADAS) will take a greater part in the

car’s software design and development. Furthermore, their increasing critical level may lead

authorities to require a certification for those systems. We think that bringing formal proof

in their development can help establishing safety properties and get an efficient certification

process. Other industries (e.g. aerospace, railway, nuclear) that produce critical systems

requiring certification also took the path of formal verification techniques. One of these

techniques is deductive proof. It can give a higher level of confidence in proving critical

safety properties and even avoid unit testing.

In this paper, we chose a production use case: a function calculating a square root

by linear interpolation. We use deductive proof to prove its correctness and show the

limitations we encountered with the off-the-shelf tools. We propose approaches to overcome

some limitations of these tools and succeed with the proof. These approaches can be applied

to similar problems, which are frequent in automotive embedded software.

Keywords: Formal Methods, Deductive Proof, Proving Discrete-Valued Functions

1. Introduction and Motivation

Today, the automotive industry relies mostly on a model-based approach for developing

embedded software. It consists in connecting common library blocks (operators) to design and

simulate a model of the behavior to be produced. It uses a higher level of abstraction than

the code. Code with the behavior of the model is then produced automatically. The most

commonly used tools for software design are Simulink, from the MathWorks, and Scade, from

ANSYS.

The main advantage of this approach is that models can be simulated and debugged before

code generation. Thus, some of the errors are found and fixed earlier in the design process. On

46 Todorov V., Taha S., Boulanger F., Hernandez A. Proving properties of Discrete-Valued Functions ...

the other hand, simulation shares many common points with testing and cannot prove that the

calculation is correct. Furthermore, the implementation of a model on a specific hardware can

bring behaviors that have not been seen before at design stage.

For the rest of the study we take as example a function calculating a square root. During the

design stage, the simulation can use a standard implementation of this function. However, in

the implementation, we replace it with an optimized version because of hardware constraints.

Our example is a discrete-valued function implementing the square root calculation, which uses

a linear interpolation table. In automotive applications, as on-board computers have limited

power, discrete-valued functions are frequently used in the implementation to avoid complex

calculations.

In the near future, we expect that authorities will require a certification for highly critical

software in self-driving cars. Our motivation is to provide proofs of correctness for production

code using formal methods.

In a previous paper [17], we summarized some experiments about applying tools that use

formal methods to industrial software. In this paper, we give details about the application of

deductive proof to production code, the problems we encountered with off-the-shelf tools, and

some approaches to solve this type of problems. Our function has been implemented in C and

we used Frama-C WP [12] for proving its correctness. As some of the goals were impossible to

prove with Frama-C and its solvers we implemented it in SPARK (based on Ada) to prove it with

GNATprove [5]. We discuss the results and how other methods such as Abstract interpretation

can be combined with deductive proof.

2. Deductive methods

2.1. Preliminaries

The foundations of the proof of logical properties on an imperative language program were

put forward by C. A. R. Hoare [11] in 1969. Based on the precise semantic of a computer

program, Hoare proposed to prove certain properties by mathematical deductive reasoning,

generally at the end of the program.

He introduced a notation called the Hoare triple, which associates a program Q, start hy-

potheses P, and expected output properties R:

P {Q} R

System Informatics (Системная информатика), No. 14 (2019) 47

The logical meaning of this triple corresponds to: if P is true, then after executing program

Q, R will be true if Q terminates. The calculus of Hoare’s triples is, in general, undecidable.

The proving by application of Hoare’s rules is an intellectual process and is not tool driven.

It is up to the author of the proof to define the correct properties between each instruction

of the program and to establish its demonstration by applying the different theorems. This

activity is not adapted to process thousands of lines of code in an acceptable time.

An initial automation of the process of proving programs was brought by the calculation

of the WP (Weakest Precondition) from Dijkstra [8]. The principle consists in automatically

calculating the most general property WP(S,P) holding before a statement S such that property

P holds after the execution of S :

WP (S, P) {S} P

The calculus of WP is defined for each instruction. The proof process consists in calculating

WP by going backward from the end of the program for which we want to prove P, up to the

beginning. For full correctness, S must terminate.

The returned predicate from the WP calculation can rapidly become rather complex. Effi-

cient (quadratic instead of exponential) verification condition generation (including WP gener-

ation) were proposed in the following papers [2, 10, 16]. In order to automate the process, all

modern tools based on WP are using automatic theorem provers as back-end. We can cite, for

example Alt-Ergo [6], Colibri1, CVC4 [3], Yices2 [9], Z3 [7].

2.2. Tools for deductive reasoning

As we are interested in tools used by the industry, we present here only those that are mostly

used today: Atelier B2, Caveat [15], Frama-C WP and GNATprove.

2.2.1. Atelier B

Atelier B is a tool supporting the B method, which is a formal methodology to specify,

build and implement software systems. The B method was originally developed in the 1980s by

Jean-Raymond Abrial [1] and is based on first-order logic, set theory, abstract machine theory

and refinement theory. This method is suitable for a new development. As we reused existing

C code, we did not use this method.

1Colibri: http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf
2Atelier B: https://www.atelierb.eu

http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf
https://www.atelierb.eu

48 Todorov V., Taha S., Boulanger F., Hernandez A. Proving properties of Discrete-Valued Functions ...

2.2.2. Caveat and Frama-C WP

Caveat and Frama-C WP are tools for deductive reasoning on C programs. Caveat was

introduced at Airbus in 2002 to replace unit tests by unit proof and thus obtain a cost reduction

and quality improvement over this part of the development process. The tool with its back-

end Alt-Ergo were certified and recognized by the aviation certification authorities. Caveat

analyzed C programs (with some restrictions in terms of language constructs) and had its own

specification language based on a first order logic.

Frama-C is the academic open source tool developed by the same team as Caveat. Its

WP module verifies properties written in the ACSL3 language in a deductive manner. It

implements the Weakest Precondition calculus and targets multiple automatic solvers via the

Why3 platform4.

2.2.3. GNATprove

GNATprove is a tool for deductive reasoning over SPARK (based on Ada) programs. Like

Frama-C, it uses the Why3 platform but SPARK supports bit-vector data types. A bit-vector

is an array data type for compactly storing bits. Most modern SMT-solvers support a theory of

bit-vectors, which can help solving problems using this data type. Furthermore, for properties

that are not valid, GNATprove can obtain a counterexample from the SMT solver.

3. Experiment

We took the C code implemented in an on-board computer to prove its correctness using

deductive proof. The function calculates the square root Y of X by linear integer interpolation

between two known points (Xa, Ya) and (Xb, Yb) using the following formula:

Y = Ya + (X −Xa)
(Yb − Ya)

(Xb −Xa)

This code is used in an implementation on an on-board computer, which cannot use floating-

point numbers. We calculate the square root for numbers between 0.00 and 100.00 using an

integer representation. We consider it as a fix-point number (multiplied by 100 to have a

precision of 2 digits after the decimal separator), thus the input range is between 0 and 10000

(representing 0 and 100.00) and the returned result is a linearly interpolated value between 0

and 1000 (to be interpreted as a number between 0 and 10.00). We want to prove that the
3ACSL specification language: https://frama-c.com/acsl.html
4Why3: http://why3.lri.fr/

https://frama-c.com/acsl.html
http://why3.lri.fr/

System Informatics (Системная информатика), No. 14 (2019) 49

Fig. 1. Square root calculation in [0, 1.00] by linear interpolation from eight values

calculation is correct for a given precision. We present an example for the calculation in the [0,

1.00] subrange using eight known values in Fig. 1.

We proceeded in two steps. First, we proved a simplified version of the code using only

eight values in the interpolation table (Fig. 1). These values were a subset of the full table

present in the code, which contains 41 values. Then, we added the other values in the table

and updated the contracts to take into account the new bounds. At our surprise, this did not

scale up with Frama-C. We worked with the developers of Frama-C to understand why (we

explain it in Section 4). Then we rewrote the function in SPARK5 to see whether it would

scale better. The main difference between C and SPARK is that we can specify a bit-vector

data type in SPARK. For our use case, it helped the solver to reason using modular arithmetic.

Most SMT solvers used as back-end via Why3 have a theory of bit-vectors. If we do not

use bit-vectors, the SMT solver is reasoning by default using non-modular arithmetic. We also

analyzed our complete C code with Astrée [13] from AbsInt, a static analysis tool using abstract

interpretation, to prove some difficult goals and provide useful hypotheses to Frama-C WP.

Our first proof on the simplified code succeeded with Frama-C. Extending the table to 41

values, as in the real code, did not succeed. On the other hand, SPARK succeeded with the

full table of 41 values.

5Special thanks to Yannick Moy from AdaCore

50 Todorov V., Taha S., Boulanger F., Hernandez A. Proving properties of Discrete-Valued Functions ...

4. Results

In this section, we explain the results and why Frama-C failed to scale-up from 8 to 41

values, and what should be done to cope with this type of problems.

4.0.1. From Frama-C to the SMT solver

To understand the reason why automatic proof failed for the full table, we have to detail the

transformations between the C code through Frama-C, Why3 and the solvers. First, Frama-C

transforms the C code and its ACSL contracts using the weakest precondition calculus into ver-

ification conditions (VC) in the WhyML language. It also introduces additional goals to verify

the absence of runtime errors such as overflows. The WhyML output contains all the theories

necessary for the proof and is sent to Why3. Then Why3 transforms it into the language of

the chosen prover. For our use case, the WhyML transformation contained quantified formulas

and redefined some operators such as division using uninterpreted functions.

4.0.2. The difficult goal

There were 51 goals (verification conditions) to be proved and two of them were not proven.

The most difficult goal was about proving that the contract of the post condition in the linear

interpolation function had the same behavior as the code. We show it in Fig. 2.

Actually, contracts use mathematical arithmetic (without overflow), but code uses modular

arithmetic, where overflows may occur. For our use case, we used a 16-bit unsigned integer to

store the returned value of the interpolation.

4.0.3. Direct proof with SMT-LIB

Since 2 goals were not proven with the official Frama-C version, we obtained a new version

that could address directly SMT solvers using the SMT-LIB standard [4]. We proved our

goals with Colibri, CVC4 and Yices2. We remarked that the SMT-LIB file did not contain

quantifiers and did not redefine operators such as division. We concluded that this approach

scaled and worked better for problems with nonlinear arithmetic such as interpolation functions.

Furthermore, some SMT solvers such as Yices2 do not support quantification.

4.0.4. Experience with the Why3 SMT output files

We wanted to understand what was the impact of the redefined division using uninterpreted

functions and of quantified formulas, so we modified manually the SMT request sent to the

System Informatics (Системная информатика), No. 14 (2019) 51

solver. First, we removed the specific functions about division and used the standard SMT-LIB

div operator. Then, the proof succeeded with CVC4 but only if using nonlinear logic containing

bit-vectors. Disabling bit-vectors from that logic resulted in a failure to prove the formula. On

the other hand, the quantifier-free SMT output did not need bit-vector logic to be proved.

4.0.5. Abstract interpretation

Because it is difficult to understand how the SMT solvers proved the difficult goal, we used

Astrée to prove the absence of overflow in the returned value of the linear interpolation function.

This proof can then be used as hypothesis in Frama-C WP. Astrée could find the dependency

between Yb and Ya and estimate a precise interval for (Yb−Ya). The same was done for (Xb−Xa)

and (X −Xa). Thus a precise interval was calculated for Y in [0, 10000], which fits in a 16-bit

unsigned integer without overflow.

5. Methodology

In this section, we propose a methodology based on our experience to solve problems using

discrete-valued functions such as linear interpolation. Our use case is a simple one and we could

have tested it for each value in the domain of validity of the function. However, in practice,

there are more complex discrete-valued functions implemented with linear interpolation tables

typedef unsigned short uint16;

typedef unsigned char uint8;

/*@

requires 0 <= Xa <= 10000 && 0 <= Xb <= 10000;

requires 0 <= Ya <= 1000 && 0 <= Yb <= 1000;

requires Yb > Ya && Xb >= Xa;

requires Xa <= X <= Xb;

ensures Xa != Xb ==> \result == (Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));

ensures Xa == Xb ==> \result == Ya;

assigns \nothing;

*/

uint16 LinearInterpolation(uint16 Xa, uint16 Ya, uint16 Xb, uint16 Yb, uint16 X)

{

if (Xa != Xb) {

return(Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));

} else {

return(Ya);

}

}

Fig. 2. Annotated interpolation function for Frama-C WP automatic proof

52 Todorov V., Taha S., Boulanger F., Hernandez A. Proving properties of Discrete-Valued Functions ...

Fig. 3. Methodology for proving Discrete-Valued Functions

called lookup tables. These functions are often called by other discrete-valued functions. The

number of cases to test can be the product of the cardinalities of the domains of the individual

functions. We propose to use the methodology shown below in Fig. 3 in order to prove those

functions.

First, we need to isolate all the functions we want to prove together and annotate the code

with contracts specifying the behavior expected from each function. Then, we can try to prove

it in Frama-C via Why3. If the proof succeeds, we can stop. Otherwise, we can try to use the

direct SMT-LIB output of Frama-C WP with the SMT solvers. As we have seen, this approach

removes quantifiers and uses native mathematical operators. If it does not succeed, for some

goals (VCs) we can try to prove them using abstract interpretation tools. If this method does

not succeed, we need to use a proof assistant to prove the difficult goals.

6. Conclusions

In this paper, we have presented our experiments with automatic deductive proof of correct-

ness of a discrete-valued function calculating a square root by interpolation. We used Frama-C

WP and GNATprove to prove the function correct but encountered some difficulties with the

nonlinear formula of the linear interpolation. Three non-standard approaches worked well for

us: the use of bit-vectors in SPARK, the direct SMT-LIB quantifier-free output of Frama-C and

the static analysis with Astrée. Bit-vectors are well supported in most modern SMT solvers

and are well suited for problems that involve modular arithmetic, but scaling is sometimes dif-

ficult. For our use case, SMT requests without quantifiers performed and scaled better because

there was no need for bit-vectors. Abstract Interpretation analysis gave more confidence in

proving that there was no overflow in the linear interpolation calculus. We have proposed a

System Informatics (Системная информатика), No. 14 (2019) 53

methodology to use a combination of these different methods until the proof is done. We also

show that using industrial use cases with off-the-shelf tools does not always scale, but if we

work with researchers, we can find a solution and improve the tools.

Using deductive methods is very promising in an industrial context for safety-critical ap-

plications. It can replace unit tests as shown in [14] and thus decrease cost while increasing

quality. It is also an intellectual activity that brings more satisfaction for engineers compared

to testing.

References

1. Abrial J.R. The B-book: assigning programs to meanings. 1996.

2. Barnett M., Leino K.R.M. Weakest-precondition of Unstructured Programs // SIGSOFT Softw.

Eng. Notes. 2005. Vol. 31. No. 1, P. 82–87.

3. Barrett C., Conway C.L., Deters M., Hadarean L., Jovanovi’c D., King T., Reynolds A., Tinelli C.

CVC4 // In: Gopalakrishnan G., Qadeer S. (eds.) (CAV’11). LNCS. Springer, 2011. Vol. 6806, P.

171–177.

4. Barrett C., Stump A., Tinelli C., Boehme S., Cok D., Deharbe D., Dutertre B., Fontaine P., Ganesh

V., Griggio A., Grundy J., Jackson P., Oliveras A., Krstić S., Moskal M., Moura L.D., Sebastiani

R., Cok T.D., Hoenicke J. The SMT-LIB Standard. Version 2.0. Tech. rep. 2010.

5. Chapman R. Industrial Experience with SPARK // Ada Letters. 2000. Vol. XX. No. 4.

6. Conchon S., Coquereau A., Iguernlala M., Mebsout A. Alt-Ergo 2.2. // SMT Workshop: Interna-

tional Workshop on SMT. Oxford, United Kingdom, 2018.

7. De Moura L., Bjorner N. Z3: An Efficient SMT Solver // TACAS’08/ETAPS’08, Springer-Verlag,

Berlin, Heidelberg, 2008.

8. Dijkstra E.W. Guarded Commands, Nondeterminacy and Formal Derivation of Programs // ACM.

1975. Vol. 18. No. 8. P. 453–457.

9. Dutertre B. Yices 2.2 // In: Biere, A., Bloem, R. (eds.) Computer Aided Verification. Springer,

Cham, 2014. P. 737–744.

10. Flanagan C., Flanagan C., Saxe J.B. Avoiding Exponential Explosion: Generating Compact Veri-

fication Conditions // SIGPLAN Not. 2001. Vol. 36. No. 3. P. 193–205.

11. Hoare C.A.R. An Axiomatic Basis for Computer Programming. 1969.

12. Kirchner F., Kosmatov N., Prevosto V., Signoles J., Yakobowski B. Frama-C: A software analysis

perspective // Formal Aspects of Computing. 2015. Vol. 27. No. 3.

13. Mauborgne L. Astrée: Verification of Absence of Runtime Error // In: Jacquart R. (ed.) Building

the Information Society: IFIP 18th World Computer Congress Topical Sessions 22–27, Toulouse,

France, Springer, 2004. P. 385–392.

14. Moy Y., Ledinot E., Delseny H., Wiels V., Monate B. Testing or Formal Verification: DO-178c

Alternatives and Industrial Experience // IEEE Soft. 2013. Vol. 30. No. 3.

54 Todorov V., Taha S., Boulanger F., Hernandez A. Proving properties of Discrete-Valued Functions ...

15. Randimbivololona F., Souyris J., Baudin P., Pacalet A., Raguideau J., Schoen D. Applying Formal

Proof Techniques to Avionics Software: A Pragmatic Approach // Proc. of the Wold Congress on

Formal Methods in the Development of Computing Systems. Springer-Verlag, London, 1999.

16. Shilov N.V., Anureev I.S., Bodin E.V.: Generation of correctness conditions for imperative pro-

grams // Programming and Computer Software. 2008. Vol. 34. No. 6. P. 307–321.

17. Todorov V., Boulanger F., Taha S. Formal Verification of Automotive Embedded Software // Proc.

of the 6th Conf. on Formal Methods in Software Engineering. FormaliSE’18, ACM, New York, USA,

2018. P. 84–87.

System Informatics (Системная информатика), No. 14 (2019) 55

UDC 519.7

On parallel composition of

Finite State Machines with timed guards

Tvardovskii A.S. (Tomsk State University),

Yevtushenko N.V. (Ivannikov Institute for System Programming of the RAS)

Finite State Machines (FSMs) are widely used for analysis and synthesis of digital

components of control systems. In order to take into account time aspects, timed FSMs are

considered. In this paper, we address the problem of deriving a parallel composition of FSMs

with timed guards and output delays (output timeouts). When the parallel composition is

considered, component FSMs work in the dialog mode and the composition produces an

external output when interaction between components is terminated. In this work, we formally

introduce the parallel composition operator for FSMs with timed guards (TFSM) and show that

unlike classical FSMs, a "slow environment" and the absence of live-locks are not enough for

describing the behavior of a composition of deterministic TFSMs by a deterministic FSM with a

single clock. Although the set of deterministic FSMs with timed guards is not closed under the

parallel composition operator, some classes of deterministic TFSMs are still closed under this

operator.

Keywords: Timed Finite State Machines, output timeouts, timed guards, parallel composition

1. Introduction

Finite State Machines (FSMs) are widely used for analysis and synthesis of discrete systems [1,

2], for example, for test derivation [3], verification [4] and optimization [1]. An FSM models a

discrete event system that moves from state to state producing an output when an input is applied

and is appropriate when reactive systems are considered. When the behavior of a complex system is

described, a hierarchical approach is usually applied, i.e., a complex system is represented as a

system of interacting components which usually are ‘simpler’ than the whole system. In the context

of the FSM theory, a number of composition operators are considered and the notions of the parallel

and synchronous compositions are defined [2]. A parallel composition describes the behavior of

component machines which interact in a dialogue mode and is known to be appropriate when

describing the joint functioning of protocol implementations and/or software components of

telecommunication systems under the assumption of ‘one message in transit’. The parallel

composition operator is well known for classical FSMs and the set of deterministic FSMs is closed

56 Tvardovskii A.S., Yevtushenko N.V. On parallel composition of Finite State Machines with timed guards

under this operator when a so-called slow environment is considered. The slow environment means

that the next input can be applied to the FSM composition only after the composition has produced

an external output to the previous input.

Nowadays, a number of reactive systems take into account time aspects and thus, FSM based

methods have to be extended to FSMs with time aspects such as timed guards, input and output

timeouts [5, 6, 7]. A timed FSM can be considered as a good compromise between the expressive

power and simplicity when considering timed automata [4, 8]. An FSM with timeouts can

spontaneously change the current state if no input is applied before the input timeout expires. An

FSM with time guards can have time restrictions at a state and thus, the behavior depends on a time

instance when an external input is applied at the current state. Output timeouts in both cases

describe the number of time units needed for processing an applied input.

In order to describe the joint behavior of communicating machines with time aspects, the

composition operator has to be defined for the collection of Timed FSMs (TFSM). The parallel

composition operator for FSMs with timeouts was proposed in [9] and is based on the intersection

of corresponding underlying automata derived for TFSM components.

In this paper, we propose an algorithm for deriving a composed machine for a system of

communicating FSMs with timed guards, namely, we define the parallel composition operator for a

pair of such complete deterministic FSMs. It is shown that unlike classical FSMs, the set of

deterministic FSMs with timed guards is not closed under the parallel composition operator in the

context of slow environment assumption, i.e., the parallel composition of two deterministic TFSMs

can have the nondeterministic behavior. Some examples can be found in [10]; however, in that

paper, only the proof sketches were proposed and it was difficult to say whether more such

situations can occur. We also consider some TFSM classes for which it is not the case, i.e., TFSM

classes which are closed under the parallel composition. The definition of the parallel composition

operator can also be used for checking whether there are live-locks in the composition of

deterministic TFSMs, i.e., can be used for the verification of TFSM compositions.

The rest of the paper is organized as follows. Section 2 contains the preliminaries for classical

and timed FSMs. In Section 3, the parallel composition operator is defined. In section 4, TFSM

classes closed under the parallel composition are considered. Section 5 concludes the paper..

2. Preliminaries

Finite State Machines [1, 2] are widely used for modeling reactive systems that move from state

to state under input stimuli and produce a predefined output response. Formally, an initialized FSM

is a 5-tuple S = S, s0, I, O, hS where S is a finite non-empty set of states with the designated

System Informatics (Системная информатика), No. 14 (2019) 57

initial state s0, I and O are input and output alphabets, and hS (S I O S) is the transition

(behavior) relation. A transition (s, i, o, s) describes the situation when FSM S moves from current

state s to state s when an input i is applied producing the output (response) o. The FSM S is

nondeterministic if for some pair (s, i) S I, there exist several pairs (o, s′) O S such that

(s, i, o, s′) hS; otherwise, the FSM is deterministic. The FSM S is complete if for each pair (s,

i) S I there exists (o, s′) O S such that (s, i, o, s′) hS; otherwise, the FSM is partial.

FSM S is observable if for every two transitions (s, i, o, s1), (s, i, o, s2) hS it holds that s1 = s2.

A timed FSM can be annotated with a timed variable, timed guards and output delays [5, 6, 7]. In

this paper, an initialized TFSM is a 5-tuple S = (S, s0, I, O, S) where S is a finite non-empty set of

states with the designated initial state s0, I and O are input and output alphabets, S S I O

S Z is the transition relation where the set is a set of input timed guards and Z is the set

of output delays which are non-negative integers. An input timed guard g describes the time

domain when a transition can be executed and is given as an interval <min, max> from [0;),

where < {(, [}, > {),]}. The transition (s, i, o, s, g, d) S I O S Z means that

TFSM S being at state s accepts an input i applied at time t g measured from the initial moment

or from the moment when TFSM S produced the last output; the clock then is set to zero and S

produces output o after d time units. After producing the output the clock also is set to zero.

The TFSM S is a complete if the union of all input timed guards at any state s under every input i

equals [0;). The TFSM S is a deterministic TFSM if for each two transitions (s, i, o1, s1, g1, d1),

(s, i, o2, s2, g2, d2) hS, s1 s2, d1 d2 or o1 o2, it holds that g1 g2 = , otherwise, TFSM S is

nondeterministic. The TFSM S is observable if for every two transitions (s, i, o, s1, g1, d), (s, i, o,

s2, g2, d) S such that g1 g2 it holds that s1 = s2. In this paper, we consider a system of

interacting complete deterministic TFSM components and check whether the parallel

composition can have live-locks and/or the nondeterministic behavior. A timed input is a pair (i, t)

where i I and t is a real; a timed input (i, t) means that input i is applied to the TFSM at time

instance t. A timed output is a pair (o, d) where o O and d is the output delay for producing the

output o after an input was applied. A sequence of timed inputs = (i1, t1) … (in, tn) is a timed input

sequence, a sequence of timed outputs = (o1, d1) … (on, dn) is a timed output sequence.

In this work, we also use the notion of a Finite Automaton that is a 4-tuple S = (S, s0, A, hS),

where S is a finite non-empty set of states with the designated initial state s0, A is a finite non-

empty set of actions and hS (S A S) is the transition (behavior) relation. A transition (s, a,

58 Tvardovskii A.S., Yevtushenko N.V. On parallel composition of Finite State Machines with timed guards

s) describes the situation when automaton S moves from state s to state s under action a. A trace of

automaton S at state s is a sequence of actions which takes S from state s to state s.

3. Defining the parallel composition operator

In this section, we propose an algorithm for deriving the parallel composition of complete

deterministic TFSMs. The parallel composition operator takes two TFSMs; the input (output)

alphabet of each of them is divided into two subsets of external and internal inputs (outputs). We

further assume that IS and V (IP and U) are external and internal input alphabets of component

TFSM S (or P correspondingly) while OS and U (OP and V) are external and internal output

alphabets of component TFSM S (or P correspondingly). When an external timed input is applied to

the one of components, for example, to the component TFSM S, the component produces a

corresponding output response that can be an internal or an external output after appropriate number

of time units. If an external output is produced then the composition is ready to accept the next

external input, while the value of a time variable of another component P is increased by the time

that was needed for S to communicate with the environment. If S produces an internal output then

the P processes it according to its description and produces an external output to the environment or

an internal input that is applied to the S. The dialog holds until an external output is produced by

one of the components. If the component TFSMs fall into the infinite dialogue then the composition

is said to have a live-lock and the behavior of the composition is not defined for a corresponding

input. As usual, we assume that the system of interaction TFSMs works in the slow environment,

i.e., the next external input can be applied to the composition only when the latter has produced an

external output to the previous external input.

Consider the composition of TFSMs S and P in Figure 1 and an external input sequence (i1,

0.4).(i2, 0.5) where i1 and i2 are external inputs of component TFSMs S and P, respectively. Input

(i1, 0.4) is applied to component TFSM S which produces the external output (o11, 1) without any

dialog with component TFSM P and resets the value of its timed variable to zero. At the same time,

the value of the timed variable of component TFSM P is increased to 1.4, i.e., to the time value

when component TFSM S was communicating with the environment, and reaches the value 1.9

when the next external input i2 is applied. Correspondingly, the P produces an internal output (v, 2)

to the component S and the latter produces an external output (o12, 3). Therefore, for the next input

(i2, 0.5) the composition produces an external output (o12, 5) where five is the sum of time units

needed to execute both transitions. By direct inspection a reader can assure that if the second

external input i2 were applied at time 0.9 instead 0.5 then P would produce an external output (o22,

1) without a dialog with component TFSM S.

System Informatics (Системная информатика), No. 14 (2019) 59

Fig. 1. Parallel composition of TFSMs S and P

When talking about the parallel composition over TFSMs, we would like to describe the

behavior using the same model, i.e., the model of an FSM with timed guards. As a minimal timed

guard has the duration one, the above example clearly shows that the parallel composition of

deterministic TFSMs can have the nondeterministic behavior.

Another problem when describing the behavior of interacting deterministic FSMs which

communicate in a dialogue mode, are live-locks when component FSMs fall into an infinite

dialogue without producing an external output. Therefore, even under the assumption of the slow

environment the parallel composition of two deterministic complete TFSMs can be partial and

nondeterministic. Below we propose an algorithm for deriving the parallel composition of two

FSMs with timed guards. In general case, this composition can have live-locks and the

nondeterministic behavior; both features can be detected during the parallel composition

construction.

Parallel composition operator:

Given a positive integer B, we use the following notations. The set GВ of intervals is the set {[a,

a], (a, a + 1), [B, B], (B,): a N and a < B}, where N is the set of non-negative integers. Given

two intervals g, g GВ, we define the composition g ∘ g of these intervals. If g = [a, a] and g = [b,

b] then g ∘ g = [a + b, a + b]; if g = (a, b) and g = (a, b) then g ∘ g = (a + a, b + b) assuming

that a + = for any integer a.

For each interval g, we specify a corresponding set FВ(g) of GВ items. FВ(g) = {g : g GВ, g

 g }.

The behavior of a TFSM can be adequately described using a classical FSM that is called the

FSM abstraction of the TFSM [11]. Given a complete observable possibly deterministic TFSM S =

(S, s0, I, O, S) with the largest finite boundary of timed guards BS and the largest output delay DS,

the behavior of a corresponding FSM abstraction AS(B) = (S, s0, IA, OA, SA), where B BS, IA = I

GВ, OA = O {0, 1, …, DS}, can be described as follows. There is a transition (s, (i, gi), (o, d), s)

60 Tvardovskii A.S., Yevtushenko N.V. On parallel composition of Finite State Machines with timed guards

SA if and only if there is a transition (s, i, o, s, g, d) S such that gi g. For deterministic TFSMs

S and P in Figure 1 corresponding FSM abstractions are shown in Figure 2.

Fig. 2. FSM abstractions of TFSMs S and P

Algorithm for deriving the parallel composition of initialized deterministic complete FSMs

with timed guards S and P

Input. Initialized deterministic complete FSMs with timed guards S = (S, s0, IS = Is V, OS = Os

U, hS) and P = (P, p0, IP = Ip U, OP = Os V, hP), where Is and Os (Ip and Op) are external input

and output alphabets of the component TFSMs S (P) while V and U (U and V) are internal input and

output alphabets of the component FSM S (P); the alphabets are pairwise disjoint

Output. Parallel composition of S and P that is a FSM T with timed guards or one of messages

«The system has a live-lock» or «The behavior of the system is nondeterministic»

Step 1. Derive the global automaton Q = (Q, {(i, g)/(r, d): i Is Ip, o Os Op, g GВ, d Z},

q0, Q), where B is maximum of BS and BP and each state q Q that is a stable state, is a 4-tuple (s,

gs, p, gp) S GВ P GВ; each state q Q that is an unstable state, is a 5-tuple (s, gs, p, gp, (a,

g)) where (s, gs, p, gp) S GВ P GВ and a U V, g GВ. By definition, the initial state q0

= (s0, [0, 0], p0, [0, 0]) is stable. A state is stable if and only if every incoming transition to a state is

labelled by an action (r, g)/(o, d) where o is the external output of S or P. At each stable state every

transition under an action (i, g)/(r, d), where i is the external input of S or P, is defined. At an

unstable state that is a 5-tuple (s, gs, p, gp, (a, g)), the only defined transition is under an action (a,

gs)/(o, d), r OS OP.

Step 2. Derive FSM abstractions AS(B) and AP(B).

System Informatics (Системная информатика), No. 14 (2019) 61

For each external input i Is, interval g GВ and stable state (s, [0,0], p, gp) of the automaton Q

and transition (s, (i, g), (r, d), s) of the FSM abstraction AS(B)

If r is internal then add to Q transitions ((s, [0,0], p, gp), (i, g)/(r, d), (s, [0,0], p, gp, (r, [d,

d])) where gp FВ(g ∘ gp∘ [d, d]);

Else add to Q transitions ((s, [0,0], p, gp), (i, g)/(r, d), (s, [0,0], p, gp)), where gp FВ(g ∘ gp∘

[d, d]);

For each external input i Ip, interval g GВ and stable state q = (s, gs, p, [0,0]) of the

automaton Q and transition (p, (i, g), (r, d), p) of the FSM abstraction AP(B)

If r is internal then add to Q transitions ((s, gs, p, [0,0]), (i, g)/(r, d), (s, gs, p, [0,0], (r, [d, d]))

where gs FВ(g ∘ gs∘ [d, d]);

Else add to Q transitions ((s, gs, p, [0,0]), (i, gi)/(r, d), (s, gs, p, [0,0]), where gs FВ(g ∘ gs∘

[d, d];

For each unstable state (s, [0,0], p, gp, (r, [d, d]) of global automaton Q with an incoming

transition labeled by (i, g)/(r, [d, d]) determine a transition (p, (r, gp), (m, k), p) of the FSM

abstraction AP(B);

If m is internal then add to Q a transition ((s, [0,0], p, gp, (r, [d, d])), (r, [d, d])/(m, k), (s, [k,

k], p, [0, 0], (m, [k, k]));

Else add to Q a transition ((s, [0,0], p, gp, (r, [d, d])), (r, [d, d])/(m, k), (s, [k, k], p, [0, 0]))

For each unstable state (s, gs, p, [0,0], (r, [d, d])) of global automaton Q with an incoming

transition labeled by (i, g)/(r, [d, d]) determine a transition (s, (r, gs), (m, k), s) of the FSM

abstraction AP(B);

If m is internal then add to Q a transition (s, gs, p, [0,0], (r, [d, d])), (r, [d, d])/(m, k), (s, [0, 0],

p, [k, k], (m, [k, k]))

Else add to Q a transition ((s, gs, p, [0,0], (r, [d, d])), (r, [d, d])/(m, k), (s, [0, 0], p, [k, k]))

Step 3. Derive the parallel composition of S and P in the form of FSM abstraction AT

If the global automaton Q has a cycle where all transitions are labelled with internal actions then

return the message «The composition has a live-lock»;

Else Derive an FSM AT:

- states of AT correspond to stable states of the global automaton Q;

- for each trace = (i1, g1)/(o1, d1), …, (in, gn)/(on, dn) which takes Q from a stable state q1 to

stable state q2, add to AT a transition (q1, (i1, g1), (on, d), q2) where d = d1 + … + dn is the sum of

all output delays in trace ;

- derive the observable form of FSM AT [12];

62 Tvardovskii A.S., Yevtushenko N.V. On parallel composition of Finite State Machines with timed guards

If AT is nondeterministic then return the message «The composition behavior cannot be described

by a deterministic TFSM».

Else the FSM abstraction AT is translated into TFSM T.

Consider as an example of parallel composition of TFSMs S and P in Figure 1. A fragment of

the global automaton derived at Step 2 of the above algorithm and a fragment of the corresponding

FSM AT are shown in Figure 3.

Fig. 3. A fragment of the global automaton Q for TFSMs S and P and a fragment of the corresponding

FSM AT

4. Selected TFSM classes closed

under the parallel composition operator

When analyzing Algorithm 1, we conclude that the derived composed machine can be

nondeterministic when at least one stable state of global automaton has interval (a, b). In this case,

the response of TFSM components to input (i, (a, b) cannot be uniquely specified. In this section,

we consider special classes of TFSM composition for which the composition behavior is

deterministic.

We first note that the global automaton Q and the corresponding composed machine are

deterministic if GВ = {[0, 0], [1, 1], …, [B, B], (B,)}. Another case of deterministic behavior

occurs when for each external input every component produces an internal output, as the automaton

Q is then taken to an unstable state from which there the only deterministic transition is defined.

Below we formally specify deterministic TFSM classes which are closed under the paper

composition operator. Differently from [10], the proofs to Propositions 1 and 2 are direct corollaries

to the definition of the parallel composition operator.

System Informatics (Системная информатика), No. 14 (2019) 63

Proposition 1 [10]. Let S and P are deterministic complete FSMs with timed guards. Parallel

composition of TFSMs S and P is a deterministic TFSM if for each transition (q, i, a, q, g, d) hS

 hP, where i is an external input, it holds that a is an internal output.

Proposition 2. Let S and P are deterministic complete FSMs with timed guards. Parallel

composition of TFSMs S and P is deterministic TFSM if external inputs can be applied to TFSM

composition only at integer time instances.

In both above cases, the value of the clock variable of each component is an integer when an

external output is produced and GВ = {[0, 0], [1, 1], …, [B, B], (B,)}.

Proposition 3. Let S and P be deterministic complete FSMs with timed guards. The parallel

composition of TFSMs S and P is a deterministic TFSM if the minimum output delay in TFSM S

and P is bigger than the maximum of BS and BP.

In these cases, the value of the clock variable of each component is 0 or (B,) when an external

output is produced, respectively GВ = {[0, 0], (B,)}.

Similar to parallel composition operator over classical FSMs [2], the parallel composition of

FSMs with timed guards is a complete TFSM if the system of communicating TFSMs has no live-

locks.

5. Conclusion

In this paper, we propose an algorithm for deriving a composed machine for a system of

communicating FSMs with timed guards, namely, we define the parallel composition operator for a

pair of complete deterministic FSMs with timed guards. Similar to classical finite state machines,

we assume the slow environment, i.e., the next external input is applied to the system only when the

system has produced an external output to the previous external input. However, differently from

classical finite state machines, the set of deterministic TFSMs is not closed under the parallel

composition operator. When deriving the parallel composition of two communicating FSMs with

timed guards, we also detect live-locks in the system (if any) and the nondeterministic behavior if

the latter occurs. We also specify some TFSM classes such that there is no nondeterministic

behavior when TFSM components of these classes are composed.

Acknowledgement

This work is partly supported by RFBR project № 19-07-00327/19.

64 Tvardovskii A.S., Yevtushenko N.V. On parallel composition of Finite State Machines with timed guards

References

1. Villa T., Kam T., Brayton R.K., Sandgiovanni-Vincentelli A. Synthesis of Finite State machines:

Logic Optimization, 1997. 520 p.

2. Villa T., Yevtushenko N., Brayton R.K., Mishchenko A., Petrenko A., Sangiovanni-Vincentelli A. The

Unknown Component Problem. Theory and Applications. Springer, 2012. 312 p.

3. Chow T.S., Test design modeled by finite-state machines // IEEE Trans. Software Eng. 1978. Vol. 4.

No. 3. P. 178–187.

4. Alur R., Dill D.L. A theory of timed automata // Theoretical Computer Science. 1994. Vol. 126. P.

183–235.

5. Krichen M., Tripakis S., Conformance testing for real-time systems // Formal Methods Syst. Des.

2009. Vol. 34. No. 3, P. 238–304.

6. Merayo M.G., Nunez M., Rodriguez, I. Formal testing from timed finite state machines // Comput.

Networks: Int. J. Comput. Telecommun. Networking. 2008. Vol. 52. No. 2. P. 432–460.

7. Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic timed finite state machines:

Equivalence checking and expressive power // Int. Conf. GANDALF. 2014. P. 203–216.

8. Springintveld J., Vaandrager F., D’Argenio P. Testing timed automata // Theor. Comput. Sci. 2001.

Vol. 254. No. 1–2, P. 225–257.

9. Kondratyeva O., Yevtushenko N., Cavalli A. Solving parallel equations for Finite State Machines with

Timeouts // Trudy ISP RAN/Proc. ISP RAS,2014. Vol. 26, No. 6. P. 85–98.

10. Tvardovskii A.S., Laputenko A.V. On the possibilities of FSM description of parallel composition of

timed Finite State Machines // Trudy ISP RAN/Proc. ISP RAS, 2018. Vol. 30. No. 1. P. 25-40 (in

Russian). DOI: 10.15514/ISPRAS-2018-30(1)-2

11. Bresolin D., Tvardovskii A., Yevtushenko N., Villa T., Gromov M. Minimizing Deterministic Timed

Finite State Machines // IFAC-PapersOnline. 2018. Vol. 51. No. 7. P. 486–492.

12. Starke P. Abstract Automata / P. Starke // American Elsevier, 1972. 419 p.

	Introduction
	Process Ontology
	Semantically-Marked Process Ontology
	Process-Oriented Semantic-Markup Patterns Ontology
	Domain-Specific Process Ontology for Typical Elements of Automatic Control Systems
	Discussion and Conclusion
	References
	Introduction and Motivation
	Deductive methods
	Preliminaries
	Tools for deductive reasoning
	Atelier B
	Caveat and Frama-C WP
	GNATprove

	Experiment
	Results
	From Frama-C to the SMT solver
	The difficult goal
	Direct proof with SMT-LIB
	Experience with the Why3 SMT output files
	Abstract interpretation

	Methodology
	Conclusions
	References

