
System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 11

ÓÄÊ 519.713.8

On some properties of timed �nite state machines

Vinarskii E.M., Zakharov V.A. (Lomonosov Moscow State University)

Sequential reactive systems are formal models of programs that interact with the en-

vironment by receiving inputs and producing corresponding outputs. Such formal models

are widely used in software engineering, computational linguistics, telecommunication, etc.

In real life, the behavior of a reactive system depends not only on the �ow of input data,

but also on the time the input data arrive and the delays that occur when generating

responses. To capture these aspects, a timed �nite state machine (TFSM) is used as a

formal model of a real-time sequential reactive system. However, in most of previously

known works, this model was considered in simpli�ed semantics: transduction relations of

TFSMs are de�ned in such a way that the responses in the output stream, regardless of

their timestamps, follow in the same order in which the corresponding inputs are delivered

to the machine. This simpli�cation makes the model easier to analyze and manipulate, but

it misses many important aspects of real-time computation. In this paper we study a more

realistic semantics of TFSMs and show how to represent it by means of Labeled Transition

Systems. This opens up a possibility to apply traditional formal methods for verifying

more subtle properties of real-time reactive behavior which were previously ignored.

Keywords: Timed �nite state machines, transduction relation, safety property, Labeled

Transition System, bisimulation

1. Introduction

Timed �nite state machines (TFSMs) are, perhaps, the most simple extensions of �nite

state machines (FSMs) which are widely used for modelling and analysis of real-time reactive

systems. There are several known ways to generalize the concept of �nite state machines for

modeling real time computations. One of the most advanced is the concept of Timed Automata

(TA) [1]. In [2�4] it was shown that TAs supplied with clocks (timers), timed guards at their

transitions and timed invariants at their states capture many important aspects of real-time

computations. However, the behavior of TAs is di�cult for the analysis since TAs were given

too much freedom in handling their timers. Complex manipulations with timers are unavoidable

when it is necessary to synchronize several events at once (e.g. to output the next control signal

no more than 2 time units after receiving the input data, but no earlier than 1 time unit after

the previous control signal is issued).

12 Vinarskii E.M., Zakharov V.A. On some properties of timed �nite state machines

However, in many practically important cases, the behavior of control systems is not so

complicated, and the response of a system is determined exclusively by the current control

state and the parameters of the input data. Therefore, in order to avoid the di�culties arising

when working with such a complex computational model as TAs, the authors of [7, 10, 11]

extended a FSM with a single timer and distinguished three families of TFSMs depending on

admissible modus operandi with timers: (i) a TFSM with timed guards which �re transitions

only when a timestamp of an input satis�es the corresponding time guard; (ii) a TFSM with

timeouts which force the machine to make a transition when a prescribed waiting time expires;

(iii) a TFSM with timed guards and timeouts. Whenever a TFSM moves to a new state, it

resets its timer. It was shown that TFSMs of this kind may be used as adequate formal models

for many interesting applications where real-time e�ects are concerned, and they are also admit

e�cient algorithms for analysis and manipulations.

As a model of real time reactive system a TFSM converts timestamped input streams into

timestamped output streams. A distinguishing feature of those classes of TFSMs that have been

studied in [7, 10, 11] is that the order of the outputs is determined not by their timestamps,

but by the order of the corresponding inputs. This principle alleviates substantially veri�cation

and optimization of TFSMs, but it also makes such a model inadequate for many applications.

Consider, for example, a behavior of a controller in Software De�ned Networks (SDN) [9]. It

supplies �ow tables of network switches with packet forwarding rules. Packets arrived to an

input bu�er of a switch are matched against a �ow table to select an appropriate rule which

either forwards the packet to some output bu�er, or drops it. When a controller updates �ow

tables, the order in which new rules are set in a table may di�er from the order in which they

were sent by the controller due to delivery delays. When the controller, say, receives requests

R1, R2 from the network it responds with a pair of commands A1, A2 which add new entries

to a �ow table. It may happen so (see [13]) that the controller at receiving a sequence of

timestamped inputs (input timed word) (R1, t1), (R2, t2), where t1 < t2, computes an output

timed word (A2, τ1), (A1, τ2), where τ2 < τ1, i.e. the second rule will be set before the �rst one.

This incorrectness cannot be detected using the early variants of TFSMs.

To cope with this shortcoming of conventional TFSMs and to make their behaviour more

�realistic� some improvements to TFSMs' semantics were introduced in [12]. A new model of

TFSMs captures an important feature of reactive system computations: the order of responses

in the output stream is determined by the time they were generated, not the order of the

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 13

corresponding requests in the input stream: if a request b arrives at the input of a machine

after a signal a then it is possible that a response to a follows a response to b. An improved

semantics of TFSMs allows one to represent explicitly the erroneous behaviour of SDN controller

mentioned above. But the new semantics of TFSMs loses the incremental property: when an

input α′ extends an input α it is not necessary that the corresponding output β′ extends an

output β which results from α. The lack of this �ne property signi�cantly complicates the

solution of the veri�cation problem if we use only the transition relations in TFSM programs.

To overcome this fundamental di�culty we introduce an alternative semantics of TFSMs

that better accommodate traditional veri�cation techniques. This semantics is de�ned in terms

of Labeled Transition Systems (LTSs) based on the concept of TFSM con�guration. However,

the statespace of such LTS(T) corresponding to a TFSM T is uncountable. Our long term

goal is to develop an algorithm which for every TFSM T constructs a �nite LTSfin(T) which

simulates LTS(T) and, thus, can be used for veri�cation of T . In this paper we present some

preliminary results of our research.

In Section 2 and 3 we introduce the concept of TFSMs with the improved automata-theoretic

semantics, and demonstrate how it can be used to adequately describe the behavior of SDN

controllers. In Section 4 we de�ne LTS-based semantics for TFSMs under consideration, study

its relationship with an automata-theoretic semantics, and present some results that contribute

to reducing the size of LTS(T) and building LTSfin(T). Section 5 concludes the paper and

presents some avenues for future work.

This research is supported by RFBR project No. 18-01-00854.

2. Preliminaries

Consider two non-empty �nite alphabets A and B; the alphabet A is called an input alphabet

while B is an output alphabet. The symbols of A can be viewed as control signals (inputs)

received by some real-time system, and the symbols of B may be regarded as responses (outputs)

generated by the system. A �nite sequence α = a1, a2, . . . , an of inputs is called an input word,

whereas a sequence β = b1, b2, . . . , bn of outputs is called an output word.

For modeling time we use a special variable which takes values in the non-negative real

domain R+
0 . Temporal aspects of computations are de�ned with the help of such notions as

timestamps, time sequences, time guards and delays. A timestamp is a positive real number

from R+ which indicates a time instance when some event occurs. A time sequence is any

14 Vinarskii E.M., Zakharov V.A. On some properties of timed �nite state machines

increasing sequence of timestamps. A time guard (and a delay) is an interval g = 〈u, v〉, where

〈∈ {(, [}, 〉 ∈ {),]}, and u, v are such numbers from R+ that u ≤ v. Time guards and delays

are used to specify periods of time in which some events are possible. We call u the left bound

of a timed guard (delay) g while v is the right bound of this timed guard (delay). If a delay is

a singleton [d, d] then we say that it is a sharp delay (and write d instead of [d, d])

Let w = x1, x2, . . . xn and τ = t1, t2, . . . , tn be an input (output) word and an increasing time

sequence of the same length. Then any pair (xi, ti) is called an input (output) timed symbol,

and a pair α = (w, τ) is called a timed word. We denote by t(α) the last value τn in the sequence

τ . Let A and B be an input and an output alphabets. Denote by G and D some sets of time

guards and delays. Then a Timed Finite State Machine (TFSM) over A, B, G, and D is a

triple T = (S, ρ, s0) where S is a �nite non-empty set of states, ρ ⊆ (S ×A×G×B ×D × S)

is a �nite transduction relation, s0 is an initial state.

Every 6-tuple (s, a, g, b, d, s′) in ρ is called a transduction of T . Such a transduction is an

atomic action that a TFSM T can perform: if after time t since the machine is into a state

s, a signal a arrives at its input and the guard condition t ∈ g for triggering the transduction

is satis�ed, then T immediately passes to the state s′ and the output response b is produced

after time t′ = t + δ where δ ∈ d. A TFSM applies these actions to all timed inputs (ai, ti) of

a given input timed word (w, τ) and generates, as a result, an output timed word (z, τ ′). This

behavior of TFSMs is de�ned formally as follows.

A run of a TFSM T on an input timed word α = (a1, t1), (a2, t2), . . . , (an, tn) is a �nite

sequence r = s0
(a1,t1)/(b1,τ1)−→ s1

(a2,t2)/(b2,τ2)−→ . . .
(an,tn)/(bn,τn)−→ sn of 6-tuples from S × A × R+ ×

B × R+ × S such that for each i ∈ {1, . . . , n} there exists a transduction (si−1, ai, gi, bi, di, si)

of T which complies with the following requirements: 1) ti − ti−1 ∈ gi, and 2) τi = ti + δ,

where δ ∈ di. In this case we say that a run r of a TFSM T converts the input timed word α

to the output timed word β = (bj1 , τj1), (bj2 , τj2), . . . , (bjn , τjn) which is the permutation of the

sequence (b1, τ1), (b2, τ2), . . . , (bn, τn). For every TFSM T we denote by TR(T) a transduction

relation computed by T which is the set of all pairs (α, β), where α is an input timed word,

and β is the result of conversion of α by T . If all delays in the set D are sharp then we say

that T is a TFSM with sharp delays. In this paper we consider only TFSMs with sharp delays.

Consider, for example, a TFSM T shown on Fig. 1 and a run r induced by the input

timed word α = (a1, 1.5), (a2, 2.7), (a3, 4). Then this run converts α to the output timed word

β = (b2, 3.7), (b1, 4.5), (b3, 6).

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 15

s0 s1 s2 s3
σ1(1, 3]/(b1, 3) σ2(1, 3]/(b2, 2) σ3(2, 4]/(b3, 2)

Figure 1. A TFSM T

3. Safety property for real-time systems

In this section, we show that for the modi�ed semantics of TFSMs as de�ned above, the

analysis of safety properties turns out to be di�cult. A subset Psafe ⊆ Aω is called a safety

property (see [5]) if every ω-word α ∈ Aω \ Psafe has such a �nite pre�x β that βα′ /∈ Psafe

holds for any ω-word α′, i.e. if a run α of a system is unsafe then a safety violation can be

detected after a �nite number of steps β, and no further system actions α′ can eliminate this

error. A straightforward extension of this concept to the case of real-time computations brings

us to the following de�nition. A subset Psafe ⊆ (A×R+)ω is called a real-time safety property

if for every timed ω-word α ∈ (A × R+)ω\Psafe there exists such a �nite timed pre�x β of α

that α′ /∈ Psafe holds for any timed extension α′ of β.

This is a reasonable and intuitive de�nition, but when it comes to TFSMs operating within

the improved semantics, it brings also some unpleasant e�ects that hinder veri�cation of these

real time models of computation. Usually safety means that no errors happen in the course of

a run of a model, and if such an error is detected after some �nite number of steps, then it can

be announced regardless of the subsequent steps of the computation. However, this common

and useful feature of safety checking does not always hold in the case of TFSMs. We illustrate

this phenomenon with an example. Consider an SDN controller C which receives requests to

update a �ow table of an SDN switch and generates in response the appropriate instructions.

Since the formation and delivery of an instruction to a network switch takes some time, the

responses start to take e�ect with some delay. A TFSM which is a real-time model of such a

controller is depicted on Fig. 2. It operates with the set of inputs (requests) PFi (put a rule ri

into a �ow table), GFi (get an info about a rule ri from a �ow table), DFi (delete a rule ri from

a �ow table), and the set of outputs (responses) FAi (a rule ri is inserted into a �ow table),

FRi (info about a rule ri is received from a �ow table), FDi (a rule ri is erased in a �ow table).

The safety property that the designers of a controller wants to respect requires that �ow

table update instructions must be always activated the same order as �ow table update requests

are received. When TFSM C receives an input timed word α = (GF1, 1.5), (PF1, 3.7), (PF2, 5.5)

it converts it to an output timed word β = (FR1, 3.5), (FA2, 8.5), (FA1, 10.7). Clearly, such a

16 Vinarskii E.M., Zakharov V.A. On some properties of timed �nite state machines

s0 s1

s2

T3: GF [1, 3)/(FR, 2)
T1: PF1[1, 3)/(FA1, 1)

T2: PF2[1, 3)/(FA2, 3)
T4: PF1[1, 3)/(FA1, 7)

T5: PF2[1, 3)/(FA2, 1)

T6: GF [1, 3)/(FR, 2)

T7: DF [1, 3)/(FD1, 5)

T8: PF1[1, 3)/(FA1, 3)

T9: PF2[1, 3)/(FA1, 1)
T10: GF [1, 3)/(FR, 2)

T11: DF [1, 3)/(FD1, 5)

Figure 2. An SDN Controller

behavior does not satis�es the safety requirement. But if C continues to receive input signals

α′ = (GF1, 1.5), (PF1, 3.7), (PF2, 5.5), (PF1, 6.7) then the corresponding output timed word

β′ = (FR1, 3.5), (FA1, 7.7), (FA2, 8.5), (FA1, 10.7) will indicate that the satis�ability of the

safety property has been restored. To cope with such cases, TFSMs need to be provided with

a more suitable way for presenting their behavior.

4. From TFSM con�gurations to a Labeled Transition System

Operational semantics of TFSMs de�ned so far suits well the modeling of real-time reactive

information processing systems since it quite naturally captures many important e�ects of real-

time computations. However, this semantics is unfavorable for the application of traditional

methods and tools for analyzing the behavior of real-time systems, since it lacks the concept

of a state of computation as a snapshot of a computing process. In this section to overcome

this drawback we introduce a concept of a con�guration which makes it possible to represent

TFSMs' behaviors by means of Labeled Transition Systems on such con�gurations.

4.1. Con�gurations of Timed Finite State Machine

Intuitively, a con�guration of a TFSM T is a snapshot of a TFSM's computation which

includes 3 components: a control state of a TFSM T , time elapsed since the last input (timer

value), and a set of output timed symbols that have been generated but not yet issued due to

delays. Formally, a con�guration q is a triple 〈s, t, TC〉 such that:

� s ∈ S is a state of T ; it will be referred as q.s;

� t ∈ R+
0 is time elapsed since the last input (referred as q.t);

� TC = {(b1, τ1), (b2, τ2), . . . , (bn, τn)}, where (bi, τi), 1 ≤ i ≤ n are timed output symbols,

is an output timed context of q (referred as q.c).

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 17

A capacity of a con�guration q is the cardinality |q.c| of its output timed context. We denote

by q.T a value min(τ1, . . . , τn) if q.c 6= ∅; in the case of q.c = ∅ we assume that q.T = ∞. We

denote by Q(T) the set of all possible con�gurations of a TFSM T .

4.2. Labeled Transition Systems

For any given TFSM T over an input alphabet A and an output alphabet B we de�ne a

Labeled Transition System LT S(T) which has three types of transitions on con�gurations: (i)

time advancement, (ii) input read, and (iii) output write.

Formally, a Labeed Transition System LT S(T) of a TFSM T = (S, ρ, s0) over alphabets A

and B is a triple (Q(T), q0, ρLT S) where q0 = 〈s0, 0, ∅〉 is the initial con�guration, and ρLT S is

a transition relation of the type (Q×R+×Q) ∪ (Q×A×Q) ∪ (Q×B×Q) which is de�ned

for every con�guration q = 〈s, t, {(b1, τ1), (b2, τ2), . . . , (bm, τm)}〉 as follows.

1. For every δ ∈ R+ such that δ ≤ q.T there exists a time advancement transition q
δ−→ q′

in ρLT S , where q
′ = 〈s, t+ δ, {(b1, τ1 − δ), (b2, τ2 − δ), . . . , (bm, τm − δ)}〉.

2. For every transduction (s, a, 〈u, v〉, c, d, s′) of T such that t ∈ 〈u, v〉 there exists an input

transition q
a−→ q′ in ρLT S , where q

′ = 〈s′, 0, q.c ∪ {(c, d)}〉; in this case, we say that this

input transition is induced by this transduction.

3. For every pair (b, 0) ∈ q.c there exists an output transition q
b−→ q′ in ρLT S , where

q′ = 〈s, t, q.c \ {(b, 0)}〉.

A path in LT S(T) is any sequence of transitions π = q0
x1→ q1

x1→ · · · qk−1
xk→ qk. A path π is

called complete if qk.c = ∅. With every path π in LT S(T) we associate a pair TR(π) = (α, β) of

an input and an output timed words which is de�ned by induction on the length of π according

to the following rules.

1. If π is an empty path then TR(π) = (ε, ε);

2. Suppose that π′ is a path in LT S(T) from q0 to q′ such that TR(π′) = (α′, β′), and a

path π is an extension of π′ with a transition E = q′
x→ q. If E is

� a time advancement transition then TR(π) = TR(π′);

� an input transition then TR(π) = (α, β′), where α = α′, (x, t(α′) + q′.t);

� an output transition then TR(π) = (α′, β), where β = β′, (x, t(α′) + q′.t).

A transduction relation TR(LT S(T)) speci�ed by a LT S(T) is the set of all pairs TR(π)

associated with all complete paths π in LT S(T). As it may be seen, LT S(T) thus de�ned

completely characterizes the behavior of a TFSM T .

18 Vinarskii E.M., Zakharov V.A. On some properties of timed �nite state machines

Proposition 1. TR(T) = TR(LT S(T)) holds for every TFSM T .

Proof (draft). Clearly, every �nite path in LT S(T) can be extended to a complete path; so,

LT S(T) has no useless paths. The inclusion TR(T) ⊆ TR(LT S(T)) is proved straightfor-

wardly by constructing an appropriate complete path in LT S(T) for every �nite run of T . The

inclusion TR(LT S(T)) ⊆ TR(T) can be proved by induction on the length of an input timed

word α.

The main advantage of LT S(T) is that this a model of the same type as that used for

veri�cation of timed automata [1]. This makes it possible to apply such model checking tools

as Uppaal [6] for the analysis of behavior of TFSMs. However, such an analysis is fraught with

certain di�culties: the statespace of LT S(T) may be in�nite. Partially, this is due to the fact

that the capacity of con�gurations in LT S(T) is unbounded in general case. Nevertheless,

under certain conditions some bounds on the capacity of con�gurations of TFSMs can be

established.

Let u, v be a pair of real numbers such that 0 < u ≤ v. A TFSM T = (S, ρ, s0) is called

(u, v)-progressive if for every transduction (s, a, g, b, d, s′) ∈ ρ a guard g = (u′, v′) is such that

u < u′ and v′ < v, i.e. the guards of all transductions of T are within the interval (u, v).

Proposition 2. If T is a (u, v)-progressive TFSM with sharp delays then there exists such an

integer ` that |q.c| < ` holds for all con�gurations q ∈ Q(T) reachable in LT S(T) from the

initial con�guration q0.

Proof (draft). Denote by dmax the maximal sharp delay in the transductions of T , and let

` = ddmax

u
e. Then by redictio ad absurdum it can be shown that for every path π = q0

x1→ q1
x1→

· · · qk−1
xk→ qk in LT S(T) the inequality |qi.c| ≤ ` holds for every 1 ≤ i ≤ k.

Another di�culty in analyzing the models LT S(T) of TFSMs is a kind of livelock e�ect

(see [5]) when any extension of a path in LT S(T) is achieved by time advancement transitions

only. To detect and exclude from further consideration such redundant paths, we will use the

notion of timelock con�guration (see [5]). For every state s of a TFSM T denote by up(s) the

maximal upper bound v in the guards g = (u, v) of all transductions (s, a, g, b, d, s′) that are

enable in s. A con�guration q is called a timelock con�guration if q.c = ∅ and q.t > up(q.s). All

other con�gurations in Q(T) are called progressive. As it may be seen from this de�nition, only

progressive con�gurations matter: if a path in LT S(T) reaches a timelock con�guration then

there are no outputs pending and no inputs will be able to trigger any further transduction

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 19

of LT S(T). Therefore, no further analysis of paths outgoing from timelock con�guration is

necessary. Detection of timelock con�gurations is easy for (u, v)-progressive TFSMs.

Proposition 3. For every state s of a (u, v)-progressive TFSM T there exists cs ≥ 0 such that

every con�guration q = (s, t, TC) is a timelock con�guration i� q.t > cs

Proof. Let s be a state of T and let v = ub(s). Consider a set of con�gurations Qs =

{q ∈ Q | (q.s = s) ∧ (q.t ≥ v) ∧ (q.c = ∅)} and the corresponding set of timestamps

TSs = {t| (q ∈ Qs) ∧ (q.t = t)}. It easy to see that TSs has the in�mum cs which satis�es the

assertion of the proposition.

Our next step will be to �nd out or introduce e�ectively a �nitely indexed equivalence

relation ∼ on the set of progressive con�gurations of LT S(T) which makes it possible to

construct such a �nite model LT Sfin(T) = LT S(T)/ ∼ that LT Sfin(T) simulates LTS(T)

w.r.t. some suitable simulation relation. Such a �nite model LT Sfin(T) opens a way for

applying conventional model checking tools for veri�cation of reactive systems represented by

TFSMs of a new type.

5. Conclusion and future work

In this paper we showed that timed �nite state machines which generate responses to the

input signals in the order that corresponds to the output delays is a quite adequate model of

real-time reactive computing systems and it could be used in some applications. However, it

turned out that some safety properties that arise in such applications are di�cult to analyze

based on the conventional operational semantics for TFSMs. To overcome this trouble we

adapt the operational semantics of TFSMs to the concept of Labeled Transition Systems to

take advantage of well-known veri�cation techniques for models of real-time systems.

Since LTS(T) which represents all possible runs of a TFSM T may have in�nitely many

internal states (con�gurations), our next step we are going to made in the future work is to

develop a technique for converting in�nite LTS(T) to �nite LT Sfin(T) in such a way that

LT Sfin(T) simulates LTS(T) w.r.t. some suitable simulation relation. We expect to �nd

out an appropriate simulation relation which (i) preserves the most important properties of

TFSM behaviours, and (ii) admits an e�cient translation of a TFSM T into its �nite model

LT Sfin(T). We think that such a translation could be developed with the help of con�guration

patterns � a new concept which would play the same role for model checking of TFSMs as timed

20 Vinarskii E.M., Zakharov V.A. On some properties of timed �nite state machines

regions for the analysis of timed automata (see [1]).

The authors of the article are grateful to the anonymous reviewers for useful comments that

helped to improve the article.

References

1. Alur R., Dill D. A theory of timed automata // Theoretical Computer Science. 1994. Vol. 126, �

2. P. 183�235.

2. Alur R., Madhusudan P. Decision Problems for Timed Automata // Proceedings of the 4-th In-

ternational School on Formal Methods for the Design of Computer, Communication, and Software

Systems (SFM'04). 2004. P. 1�24.

3. Asarin E., Caspi P., Oded M. Timed Regular Expressions // Journal of the ACM. 2001. Vol. 49,

� 2. P. 1�35.

4. Asarin E., Caspi P., Oded M. A Kleene theorem for timed automata // Proceedings of the 12-th

Annual IEEE Symposium on Logic in Computer Science (LICS'97). 1997. P. 160�171.

5. Baier C., Katoen J. Principles of Model Checking. Cambridge: MIT Press Cambridge. 2008. 994

p.

6. Behrmann G., David A., Larsen K.G. A tutorial on Uppaal // Proceedings of the International

School on Formal Methods for the Design of Computer, Communication, and Software Systems.

2004. P. 200�236.

7. Bresolin D, El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State Machines:

Equivalence Checking and Expressive Power // Proceedings of the 5-th International Symposium

on Games, Automata, Logics and Formal Veri�cation. 2014. P. 203�216.

8. Gill A. Introduction to the Theory of Finite-state Machines. New York: McGraw-Hill, 1962, 207 p.

9. McKeown N., Anderson T., Balakrishnan H., et. al. OpenFlow: enabling innovation in campus

networks // ACM SIGCOMM Computer Communication Review, 2008. Vol. 38, � 2. P. 69�74.

10. Tvardovskii A., Yevtushenko N. Minimizing �nite state machines with time guards and timeouts

// Proceedings of ISP RAS. 2017. V. 29, � 4. P. 139�154

11. Tvardovskii A., Yevtushenko N. Minimizing Timed Finite State Machines // Tomsk State Univer-

sity Journal of Control and Computer Science. 2014. Vol. 29, � 4. P. 77�83.

12. Vinarskii E., Zakharov V. On the veri�cation of strictly deterministic behaviour of Timed Finite

State Machines// Proceedings of ISP RAS. 2018. Vol. 30, � 3. P. 325�340.

13. Vinarskii E., L�opez J., Kushik N., Yevtushenko N., Zeghlache M. A Model Checking Based Ap-

proach for Detecting SDN Races // Proceedings of the 31-st IFIP WG 6.1 International Conference

on Testing Software and Systems � ICTSS. 2019. P. 194�211.

