
System Informatics (Системная информатика), No. 14 (2019) 31

УДК 004.052.42

Towards automated error localization

in C programs with loops∗

Kondratyev D.A. (A.P. Ershov Institute of Informatics Systems SB RAS)

Promsky A.V. (A.P. Ershov Institute of Informatics Systems SB RAS)

The most recent trends in the C-light verification system are MetaVCG, semantic labels

appropriate for verification condition (VC) explanation and symbolic method of definite it-

erations. MetaVCG takes a C-light program together with some Hoare’s logic and produces

on-the-fly a VC generator (VCG), which in turn processes the input program. Hoare’s logic

for definite iterations is a good choice if we try to get rid of loop invariants. Finally, if

a theorem prover was unable to validate some VCs we could follow two ways. Obviously,

we could revise/enrich specifications or/and underlying proof theory to prove the truth

of VCs. Or, perhaps, we could concentrate upon establishment of falsity, which meant

there were errors in annotated program. This is where semantic labels play crucial role

providing some natural language comments about wrong VC as well as a back-trace to

the error location. The newly developed ACL2 heuristics to prove VC falsity is the main

theme of this paper.

Keywords: deductive verification, semantic label, error localization, C-light, automated

theorem proof, C-lightVer, ACL2, MetaVCG, symbolic method of verification of definite

iterations, proof strategy

1. Introduction

The C-light project [12] corresponds to the mainstream architecture of modern verification

systems. It uses translation into an intermediate language (here, C-kernel) allowing to smooth

over some hard corners of deductive verification. In order to improve efficiency we prefer

domain specific verification condition (VC) generation, which means different generators for

different program classes. Traditional approach implies manual reprogramming of VC generator

(VCG). Instead, we adapted the MetaVCG approach of Moriconi and Schwarts [13]. For a

given axiomatic system the MetaVCG automatically constructs an ordinary generator. The

C-lightVer system is the implementation of the C-light project.

Are there any verification problems that cannot be solved by a two-level scheme or by

∗This research is partially supported by RFBR grant 17-01-00789.

32 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

MetaVCG? Indeed, there are. The loop invariants, for example. Another approach adapted

in our project, so called symbolic verification of definite iterations [14], proposes solution for

certain class of cycles over data structures. The loop execution is modeled symbolically by

replacement function rep. Some results of such adaptation were discussed in [6, 8].

At the moment, the main theorem prover for C-light is ACL2 [5]. The classic induction

in ACL2 is not powerful enough to handle VCs with replacement function rep, so the proof

strategies are proposed in [8, 11].

The traditional deductive verification works ideally for a priori correct Hoare triple with

true VCs. If some VCs are false the user must analyze the prover signals to understand what

went wrong and to localize possible errors. An easy task for toy examples which becomes a

real problem for real programs. Denney and Fisher developed the semantic labeling approach

[3]. For every VC it provides the proof protocol (in axiomatic semantics) as well as localizing

information up to the level of separate terms. A natural language explanation can be generated

from such protocol. The MetaVCG approach allowed us to easily introduce semantic labels in

our axiomatic systems [6, 7, 12].

Now, after this background overview let us address the current problematic task, error

localization for programs with loops. And again, situation is clear when ACL2 is able to

discover truth or falsity. But often the answer is "unknown". Instead of trying to satisfy a VC

we can use some strategies to check unsatisfiability. Since all variables in ACL2 are implicitly

universally quantified, the existence quantifier appears in the negated VC. Thus, our previous

strategies [8, 11] fail here and we need revised ones. Another requirement — the unsat strategies

must work for loops with abrupt termination (i.e. in presence of break statement). Possible

solution of this problem is discussed in this paper.

Related work. Some proof strategies deserve mention. For example, the system ACL2(ml)

[4] bases upon two methods. The first one is proof pattern recognition by means of statistical

machine learning. The second one is symbolic searching for analogous lemma. However, the

underlying theories may vary deeply, so machine learning is not very suitable for VC proof.

The SL-resolution is another well-known strategy [10]. Its inherent problem consists in

necessary construction of useless resolvents. To oppose the growth of disjunct set the connection

graph method was proposed [15]. In comparison to it, our strategy aims at the structure of

literals, not disjuncts.

The goals of Constraint Logic Transformation project [2] remind ours. In the same time

System Informatics (Системная информатика), No. 14 (2019) 33

their strategies are suitable for predicate processing.

2. Methods used in C-light project

MetaVCG. The metagenerator takes proof rules and axioms as its input. Technically all

of them represent patterns to be matched against C code [9]. The pattern language incorpo-

rates the first order logics and the C grammar. Expressions can contain nonterminal symbols,

like uninterpreted predicate symbols or “fragment variables” [13] denoting code snippets. Af-

filiation of metadata with certain class in the pattern language is explicit [9]. For example,

construction any_code(S) can be matched against any sequence (including empty) of C state-

ments, construction any_predicate(P) can be matched against any predicate of specification

language. Let vector v = 〈v1 . . . vk〉. Let each exprj(1 ≤ j ≤ k) is result of replacement

of all occurrences of term vector_element in the expression expr by vj. Then construct

vector_substitution(T, vec, expr) denotes the simultaneous replacement of all occurrences

of each vj(1 ≤ j ≤ k) in the formula T by expression exprj.

Semantic labeling. The idea of Denney and Fischer [3] consists in adding of semantic labels

to the proof rules. Labels explain the result of rule application. We also use notation dtel, which

means that the term t is decorated with label l. Labels themselves take form c(o, n), where

c is a concept (the term role), o is a line range (in the source program) and n is an auxiliary

information.

In contrast to the original idea, the labels in our VCs form hierarchy more suitable to

explanation generation [6]. We perform the depth search in the label tree and for each label its

common text is expanded by corresponding pattern filled by line numbers. The text patterns

for every label concept are similar to the C format strings, they are also fed to MetaVCG.

In order to support arbitrary label concepts a special construction (label t c) was added

to the language of proof rules [7]. Here, t is a term decorated by label and c is a string (label

type).

Symbolic method for the definite iterations. Consider a program fragment of the form

for x in S do v := body(v, x) end, where S is a data structure, x is a variable of type

“element of S”, v is tuple of the loop variables excluding x, body represents the loop body which

does not alter x and terminates for every x ∈ S. The ways of modification of S are quite

restricted. The loop body can only contain assignments, the if statements (perhaps nested)

34 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

ant the break statements. We call such for loops definite iterations. Let v0 be the tuple

of values of variables from v at the loop entry point. Result of the whole definite iteration

can be expressed by replacement operation rep(v, S, body, n), where rep(v, S, body, 0) = v0,

rep(i, v, S, body) = body(rep(i− 1, v, S, body), si) for all i = 1, 2, . . . , n. If the break statement

was executed during the i-th iteration of the body, the whole definite iteration continues, though

v does not change anymore: ∀j(i ≤ j ≤ n) rep(i, v, S, body) = rep(j, v, S, body).

The MetaVCG allowed us to combine ideas of definite iterations and semantics labels in the

form of the following pattern:

{P} prog {(vector_substitution(Q, v,

(label rep_iter rep(n, v, S, body).vector_element))}

|- {any_predicate(P)} any_code(prog)

for(int_var(i) = 0; int_var(i) < int_var(n); int_var(i)++)

admissible_construct(i, n, v, S, body)

{any_predicate(Q)}

where admissible_construct(i, n, v, S, body) corresponds to an admissible body of definite it-

eration, int_var corresponds to an integer variable. The construct vector_substitution(Q, v,

rep(n, v, S, body).vector_element) denotes the simultaneous replacement of all occurrences

of each vt(1 ≤ t ≤ length(v)) in the formula Q by rep(n, v, S, body).vt. The recursive defini-

tion of admissible construct is described in [8]. The algorithms of matching these patterns and

program constructs have been implemented in the C-lightVer system [6–9]. The inference rule

for downward iteration is defined similarly.

Automated generation of replacement operation. The replacement operation genera-

tion is based on translation [8] of loop body constructs into ACL2. Consider, for example,

construction b∗:

(b ∗ (. . . (var expr) . . .) result)

Expression (var expr) denotes binding of variable var with the value of expression expr,

which may depend on previously bound variables. The value of b∗ is equal to value of result,

which also can depend on bound variables. Values of variables from v correspond to values of

members of structure fr of type frame. So, to model modification of some variable in v we

bind object fr with new object which differs from the old one in the corresponding field. The

abrupt termination is modeled by truth of boolean member loop-break of object fr. Instruction

System Informatics (Системная информатика), No. 14 (2019) 35

break is modeled by the following binding: ((when t) fr). Since condition when is true, such

binding interrupts current block b∗ and returns fr.

3. Proof strategy for formulas with replacement operation

The arguments of this strategy are implication ψ containing expression rep(n, ...) and the

premise φ.

In the beginning we try to prove formula

φ→ rep(n, . . .).loop-break (ψ-lemma-1)

by induction on n. If ACL2 succeeds, we add (ψ-lemma-1) to the underlying theory. This

lemma means that premise φ of implication ψ represents situation when the loop is abruptly

terminated. Then we try to prove ψ using (ψ-lemma-1) and induction on n.

If ACL2 failed to prove (ψ-lemma-1), we address to the formula

φ→ ¬rep(n, . . .).loop-break (ψ-lemma-2)

by induction on n. Again, if ACL2 validates (ψ-lemma-2) we add it to our theory in order to

be used in the proof of ψ.

This strategy resembles one described in [8]. Indeed, both of them use the value of loop-break

field. They are automatic. Finally, they are heuristics.

But differences also take place. First, this strategy is applied to any implication containing

rep, whereas strategy from [8] analyses program postconditions only. Second, the latter one

generates lemmas in the form of conjunction. The first conjunct is a VC and the second one

establishes equality of antecedent from postcondition to the value of loop-break. Thus, lemmas

generated in [8] have rather more complex structure.

4. UNSAT strategy for VCs

The argument ω of this strategy contains expression rep(n, . . .) and has the following form:

∀x1 . . . xn (φ1(x1 . . . xn)→ ψ1(x1 . . . xn)) ∧ . . . ∧ (φm(x1 . . . xn)→ ψm(x1 . . . xn))

In ACL2 all variables of ω are implicitly universally quantified. Note that every φi or ψi is

not forced to depend on all variables x1 . . . xn. But for simplicity we imply such dependence.

36 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

Now let us prove ¬ω:

(∃x1 . . . xn (φ1(x1 . . . xn) ∧ ¬ψ1(x1 . . . xn))) ∨ . . .∨

(∃x1 . . . xn (φm(x1 . . . xn) ∧ ¬ψm(x1 . . . xn)))

Let for each i(1 ≤ i ≤ m) Ti ≡ ∃x1 . . . xn (φi(x1 . . . xn) ∧ ¬ψi(x1 . . . xn)). To prove ¬ω it is

sufficient to prove an arbitrary Ti(1 ≤ i ≤ m). If we can find such Ti the answer of strategy is

VC is false. Otherwise, the answer is Unknown.

Now, to the proof of Ti. Obviously truth of formula

T ′i ≡ (∃x1 . . . xn φi(x1 . . . xn)) ∧ (∀x1 . . . xn(φi(x1 . . . xn)→ ¬ψi(x1 . . . xn)))

is sufficient to prove Ti. Let us denote subformula ∃x1 . . . xn φi(x1 . . . xn) as Ui and the right

subformula ∀x1 . . . xn(φi(x1 . . . xn)→ ¬ψi(x1 . . . xn)) as Vi. We need to prove both Ui and Vi.

The process begins with interactive proof of Ui. Admittedly, sounds like undesirable step

away from automated verification but the reasons are as follows. First, we use the weakest

precondition calculus [8]. Therefore, Ui cannot contain replacement operation. Only the spec-

ification functions that are known to user take place in Ui. Second, almost all automatic proof

assistants have problems with existence quantifier. Third, our heuristics rests upon hypothesis

of simple antecedents and complex consequents in implications that were generated by the wp-

calculus. Based on this assumption, we try to automatize a more complex proof of Vi. If user

cannot validate Ui we suppose that the whole Ti is false.

If user confirms Ui, the proof of Vi starts. There are two possibilities. First, Vi may be

free of function rep. We simply pass this universally quantified formula to ACL2. Second, Vi

contains expression rep(n, . . .). Anyway, since user does not know definition of rep, only the

automated attempts are possible. The break statement can cause some trouble here because

it complicates definition of rep. In this case, we address the strategy from Section 3.

5. Example

The goal of this experiment is to demonstrate execution of both strategies. This case study

is also described in our on-line repository [1]. We deliberately made an error in the following

function:

1. /*@ requires (0 < n) && (n <= len(a));

2. ensures (grt-eql-cnt(n, key, a) == 0 ==> \result == 0) &&

System Informatics (Системная информатика), No. 14 (2019) 37

3. (grt-eql-cnt(n, key, a) > 0 ==> \result == 1)

4. */

5. int grt_eql_key(int n, int key, int a[]){

6. int i, result = 0;

7. for (i = 0 ; i < n; i++){

8. if (a[i] < key){result = 1; break;}}

9. return result;}

We suppose the reader is familiar with ACSL format of specifications. The logical function

grt-eql-cnt counts the number of array elements greater or equal to key. Its definition is given

in Appendix A. The program should look for array element that is greater than or equal to key

and should return 1 or 0 according to the specification. Thus, the error is the use of operator <

instead of operator >= in if-condition of loop body. The result of intermediate translation into

C-kernel looks like:

5. int grt_eql_key(int n, int key, int a[]){

6. /* begin changes Dec3 1 7-8 */

7. auto int i;

8. auto int result = 0;

9. /* end changes */

10. for (i = 0 ; i < n; i++){

11. if (a[i] < key){result = 1; break;}}

12. return result;}

Note that neither specification nor definite iteration is modified by translator. The string

"begin changes Dec3 1 7-8" stores data for the error localization protocol [12]. Of course,

it did not appear because we knew about intentional error. It is inherent mechanism of our

translation stage. In this particular case it declares that translation rule Dec3 for declarations

[12] was used and strings 7-8 are its result. Due to the symbolic method VCG produces single

VC (vc-1):

38 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

∀n, key, a

((d0 < n ∧ n ≤ len(a)eass_pre(1) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧
dgrt-eql-cnt(n, key, a) = 0eass_post(2) →

ddrep(n, key, a, 0).resulterep_iter(10−11) = 0
eens_post(2)

)

∧

(d0 < n ∧ n ≤ len(a)eass_pre(1) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧
dgrt-eql-cnt(n, key, a) > 0eass_post(3) →

ddrep(n, key, a, 0).resulterep_iter(10−11) = 1
eens_post(3)

)

where IntArr is set of integral arrays. Function rep is defined in Appendix B. Semantic label

ass_pre denotes hypothesis from precondition, ass_pre denotes hypothesis from postcondi-

tion, ens_post denotes goal from postcondition, rep_iter denotes substitution of replacement

function [7]. As expected, vc-1 cannot be proved by SAT strategies, like those from [8, 11]. It

is time to use our UNSAT strategy.

Formula vc-1 is a conjunction of two implications. Each of them uses function rep. The

formula U1 for the first conjunct φ looks like:

∃n, key, a

0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧

grt-eql-cnt(n, key, a) = 0

Since the user knows definition of grt-eql-cnt, he can prove U1 in interactive mode. Therefore,

formula V1 for conjunct φ appears:

∀n, key, a
d0 < n ∧ n ≤ len(a)eass_pre(1) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧

dgrt-eql-cnt(n, key, a) = 0eass_post(2) →
ddrep(n, key, a, 0).resulterep_iter(10−11) 6= 0

eens_post(2)

This part of the proof is automatic. The presence of break in the loop body complicates

things, so strategy from Section 3 enters on the scene. The corresponding V1-lemma-1 is as

follows:

∀n, key, a

0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int ∧ a ∈ IntArr∧

grt-eql-cnt(n, key, a) = 0→

rep(n, key, a, 0).loop-break

This lemma deserves further explanation. Since 0 < n, the loop body is executed at least once.

Amount of elements of a greater or equal to key is also zero. Thus, all elements in sub-array

System Informatics (Системная информатика), No. 14 (2019) 39

[0 : n − 1] are less than key. Control expression of the if statement contains wrong operator,

so for such array the break statement is executed. V1-lemma-1 was proved automatically in

ACL2 by induction on n and was added to the theory. Its lisp definition is given in Appendix

C.

Finally, execution of break means that result = 1. So, V1-lemma-1 contributes in automatic

proof of V1. The lips definition of V1 is given in Appendix D. As a result vc-1 is false and

explanation for V1 is produced. Let us consider this explanation.

This formula corresponds to lines 1-9 in function "grt_eql_key".

Its purpose is to show unsatisfiable case. Hence, given

- assumption that precondition from line 1 holds,

- assumption that postcondition hypothesis from line 2 holds,

ensure that postcondition goal from line 2

with substitution loop effect from lines 7-8 by rep

does not hold.

The error localization protocol [12] analyses semantic labels in V1 and results of UNSAT

strategy to generate the text above. Actually, labels in VCs contain string ranges of C-kernel

program. This is where the commented information about translation rules proves to be useful.

The location of possible error can be retranslated back to C-light program [12].

6. Conclusion

Many papers tend to demonstrate successful experiments avoiding the situation when verifi-

cation fails. To fill this gap we discussed here some ideas about error localization in the C-light

project. In case when the prover can confirm neither truth nor falsity, the traditional response if

straightforward. User tries to reinforce the underlying theory in attempt to successfully reprove

VCs. However, we do not discard bad scenario and simultaneously we try to check whether

VCs are actually false. Another point of our current interest is verification of loops with break

statement. We obtained some results in our experiments:

1. We devised the UNSAT strategy. It generates formula whose truth automatically im-

plies falsity of original VC. At the moment such formula involves either interactive and

automated proof.

2. We also propose the SAT strategy for VCs with operation rep. If abrupt termination of

the loop is described in formula premises, a corresponding lemma will be added to the

40 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

underlying theory.

These strategies are the new contribution relative to previous research [6–8, 11]. Based on

these methods, we conducted some experiments on error localization. We can also mention

successful verification [6, 8] of function asum from the interface BLAS. The more complex data

structures and the other functions from BLAS will be considered in future work.

References

1. Automated Error Localization in C Programs. URL: https://bitbucket.org/Kondratyev/verify-c-

light. Last accessed 30 Apr 2019.

2. De Angelis E., Fioravanti F., Pettorossi A., Proietti M.: Verification of Imperative Programs

by Constraint Logic Program Transformation // Electronic Proceedings in Theoretical Computer

Science. Vol. 129. P. 186–210.

3. Denney E., Fischer B. Explaining Verification Conditions // Lecture Notes in Computer Science.

B.: Springer-Verlag, 2008. Vol. 5140. P. 145–159.

4. Heras J., Komendantskaya E., Johansson M., Maclean E. Proof-Pattern Recognition and Lemma

Discovery in ACL2 // Lecture Notes in Computer Science. B.: Springer-Verlag, 2013. Vol. 8312.

P. 389–406.

5. Hunt W. A., Kaufmann M., Moore J. S., Slobodova A. Industrial hardware and software verification

with ACL2 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences. 2017. Vol. 375. No. 2104. Article Number 20150399.

6. Kondratyev D. Implementing the Symbolic Method of Verification in the C-Light Project // Lecture

Notes in Computer Science. Cham: Springer International Publishing AG, 2018. Vol. 10742. P.

227–240.

7. Kondratyev D.A. The extension of the C-light project using symbolic verification method of def-

inite iterations // XVII All-Russian Conf. of Young Scientists on Mathematical Modeling and

Information Technology. Computational technologies. 2017. Vol. 22. P. 44-59. (In Russian)

8. Kondratyev D. A., Maryasov I. V., Nepomniaschy V. A. The Automation of C Program Verification

by Symbolic Method of Loop Invariants Elimination // Modeling and Analysis of Information

Systems. 2018. Vol. 25. No. 5. P. 491–505. (In Russian)

9. Kondratyev D. A., Promsky. A. V. Developing a self-applicable verification system. Theory and

practice // Automatic Control and Computer Sciences. 2015. Vol. 49. No. 7. P. 445–452.

10. Kowalski R., Kuehner D. Linear Resolution with Selection Function // Artificial Intelligence. 1971.

Vol. 2. No. 3–4. P. 227–260.

11. Maryasov I. V., Nepomniaschy V. A., Kondratyev D. A. Invariant Elimination of Definite Iterations

over Arrays in C Programs Verification // Modeling and Analysis of Information Systems. 2017.

Vol. 24. No. 6. P. 743–754.

12. Maryasov I. V., Nepomniaschy V. A., Promsky A. V., Kondratyev D. A. Automatic C Program

System Informatics (Системная информатика), No. 14 (2019) 41

Verification Based on Mixed Axiomatic Semantics // Automatic Control and Computer Sciences.

2014. Vol. 48. No. 7. P. 407–414.

13. Moriconi M., Schwarts R.L. Automatic Construction of Verification Condition Generators From

Hoare Logics // Lecture Notes in Computer Science. B.: Springer-Verlag, 1981. Vol. 115. P. 363–

377.

14. Nepomniaschy V.A. Symbolic method of verification of definite iterations over altered data struc-

tures // Programming and Computer Software. 2005. Vol. 31. No. 1. P. 1–9.

15. Siekmann J., Wrightson G. An Open Research Problem: Strong Completeness of R. Kowalski’s

Connection Graph Proof Procedure // Lecture Notes in Computer Science. B.: Springer-Verlag,

2002. Vol. 2408. P. 231–252.

A. The ACL2 definition of grt-eql-cnt

(define grt-eql-cnt ((n integerp) (key integerp) (a integer-listp))

:guard-hints (("Goal" :induct (dec-induct n)))

:returns (result natp :hints (("Goal" :induct (dec-induct n))))

(b* ((n (nfix n))

(key (ifix key))

(a (integer-list-fix a))

((when (zp n)) 0)

((when (< (len a) n)) 0))

(if (<= key (nth (- n 1) a))

(+ 1 (grt-eql-cnt (- n 1) key a))

(grt-eql-cnt (- n 1) key a)))

///

(fty::deffixequiv grt-eql-cnt))

Due to recursive nature of grt-eql-cnt, induction is preferable when it comes to the proof of

statements containing this function.

B. The ACL2 definition of function rep

(fty::defprod frame ((loop-break booleanp) (i integerp) (result integerp)))

(fty::defprod envir ((lower-bound integerp) (key integerp) (a integer-listp)))

(define frame-init ((i integerp) (result integerp))

:returns (fr frame-p)

(make-frame :loop-break nil

:i i

:result result)

///

42 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

(fty::deffixequiv frame-init))

(define envir-init ((lower-bound integerp) (key integerp) (a integer-listp))

:returns (env envir-p)

(make-envir :lower-bound lower-bound

:key key

:a a)

///

(fty::deffixequiv envir-init))

(define rep ((iteration natp) (env envir-p) (fr frame-p))

:measure (nfix iteration)

:verify-guards nil

:returns (upd-fr frame-p)

(b* ((iteration (nfix iteration))

(env (envir-fix env))

(fr (frame-fix fr))

((when (zp iteration)) fr)

(fr (rep (- iteration 1) env fr))

((when (frame->loop-break fr)) fr)

(fr (if (< (nth

(- (+ iteration (envir->lower-bound env)) 1)

(envir->a env))

(envir->key env))

(b* ((fr (change-frame fr :result 1))

(fr (change-frame fr :loop-break t))

((when t) fr)) fr)

(b* ((fr fr)) fr)))

((when (frame->loop-break fr)) fr)

(fr (change-frame fr

:i (+ iteration (envir->lower-bound env)))))

fr))

C. The ACL2 definition of V1-lemma-1

(defrule v-1-lemma-1

(implies (and (< 0 n) (<= n (len a)) (integerp n) (integerp key) (integer-listp a)

(= 0 (grt-eql-cnt n key a)))

(frame->loop-break

(rep n (envir-init 0 key a) (frame-init 0 0))))

:enable (grt-eql-cnt envir-init frame-init rep)

:hints (("Goal" :induct (dec-induct n))))

Construction of the form

System Informatics (Системная информатика), No. 14 (2019) 43

:hints (("Goal" :induct (dec-induct n)))

prompts ACL2 to use induction on n.

D. The ACL2 definition of lemma V1

(defrule v-1

(implies (and (< 0 n) (<= n (len a)) (integerp n) (integerp key) (integer-listp a)

(= 0 (grt-eql-cnt n key a)))

(not (= (frame->result

(rep n (envir-init 0 key a) (frame-init 0 0))) 0)))

:enable (grt-eql-cnt envir-init frame-init rep v-1-lemma-1)

:hints (("Goal" :induct (dec-induct n))))

44 Kondratyev D.A., Promsky A.V. Towards automated error localization in C programs with loops

