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Язык спецификации дискретных динамических систем,

ориентированных на знания, структурированные в

онтологиях

Ануреев И.С. (Институт систем информатики СО РАН)

В статье рассматривается язык ABML (Attribute-Based Modeling Language), пред-

назначенный для спецификации и прототипирования дискретных динамических си-

стем, ориентированных на знания, структурированные в онтологиях. Язык позволяет

формально описывать как онтологические модели систем, так и правила их функци-

онирования, включая динамическое изменение структуры знаний и состояний объек-

тов.

ABML реализован как лексическое расширение диалекта Common Lisp (SBCL) и

опирается на минимальный, но выразительный концептуальный базис, включающий

объекты, атрибуты и типы объектов. Особое внимание уделяется разделению объек-

тов на изменяемые и константные, а также механизмам типизации, основанным на

атрибутах.

В работе подробно описаны средства языка для задания типов, создания и мо-

дификации объектов, сопоставления с образцом и вычисления атрибутов. Ключевым

элементом ABML является механизм атрибутных замыканий, позволяющий форма-

лизовать контекстно-зависимые вычисления атрибутов и моделировать динамику си-

стем в дискретном времени.

Практическая применимость языка демонстрируется на примере моделирования

сушилки для рук, для которой построена онтология, а также описаны правила ини-

циализации и функционирования системы. Представленный подход показывает, что

ABML может служить удобным инструментом для онтологического моделирования

интеллектуальных, информационных и программных систем.

Ключевые слова: онтологии, атрибуты, онтологические модели, графы знаний, ат-

рибутные замыкания, ABML, дискретные динамические системы

1. Введение

Современные информационные и программные системы все чаще проектируются как

сложные дискретные динамические системы, функционирование которых опирается на

структурированные знания. Такие знания, как правило, представлены в виде онтологий,

определяющих понятия предметной области, их свойства и отношения. В этой связи воз-
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никает потребность в формальных языках, способных единообразно описывать как струк-

туру знаний, так и динамику изменения состояний системы во времени.

Существующие языки онтологического моделирования, такие как OWL и связанные с

ним формализмы, в первую очередь ориентированы на декларативное представление зна-

ний и логический вывод. Однако они ограничены в средствах описания поведения систем и

моделирования их функционирования как последовательности дискретных шагов. С дру-

гой стороны, традиционные языки программирования обладают мощными вычислитель-

ными возможностями, но не всегда обеспечивают адекватную поддержку онтологического

уровня моделирования и явной работы со знаниями.

В данной работе предлагается язык ABML, который разрабатывается как средство он-

тологического моделирования дискретных динамических систем. Основной целью языка

является объединение онтологического подхода с возможностями процедурного и функ-

ционального программирования, что позволяет описывать как структуру системы, так и

правила ее функционирования в рамках единого формализма.

ABML построен как лексическое расширение диалекта Common Lisp – языка SBCL.

Выбор Lisp-подобного языка обусловлен его высокой выразительностью, развитой систе-

мой макросов и удобством встраивания предметно-ориентированных языков. Это позво-

ляет реализовать ABML с минимальным числом новых конструкций, сохраняя при этом

возможность использования всех средств базового языка.

Концептуальный фундамент ABML основан на трех ключевых понятиях: объектах, ат-

рибутах и типах объектов. Объекты используются для представления элементов системы,

атрибуты – для задания их свойств и отношений, а типы объектов – для онтологической

классификации. Существенной особенностью языка является различие между изменяемы-

ми и константными объектами, что позволяет явно контролировать семантику изменений

состояний системы.

Важным элементом ABML являются механизмы сопоставления с образцом и атрибут-

ных замыканий. Сопоставление с образцом обеспечивает удобное средство задания усло-

вий и правил поведения системы, а атрибутные замыкания позволяют формализовать вы-

числение атрибутов в фиксированном контексте, что особенно важно при моделировании

динамики и зависимостей между компонентами системы.

Для демонстрации возможностей языка в статье рассматривается пример моделиро-

вания сушилки для рук. На этом примере показывается, как с помощью ABML можно
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построить онтологическую модель системы, задать ее начальное состояние и формально

описать правила функционирования в виде дискретных тактов. Тем самым иллюстриру-

ется применимость языка для моделирования реальных технических и информационных

систем.

В оставшейся части статьи последовательно рассматриваются основные компоненты

предлагаемого подхода. В разделе 2 вводится базис языка ABML и формулируются его

ключевые концепции. Раздел 3 посвящён системе типов языка, включая базовые типы и

типы объектов, основанные на атрибутах. В разделе 4 описываются объекты, их создание

и принципы работы с изменяемыми и константными экземплярами. Раздел 5 рассмат-

ривает механизмы работы с атрибутами и способы доступа и изменения их значений. В

разделе 6 вводятся средства сопоставления с образцом, используемые для задания правил

функционирования систем. Раздел 7 посвящён атрибутным замыканиям и их роли в мо-

делировании динамики. В разделе 8 описывается онтология сушилки для рук как пример

онтологической модели системы. В разделах 9 и 10 рассматриваются запуск и функцио-

нирование сушилки в терминах ABML. В разделе 11 проведен анализ родственных работ.

В заключительном разделе подводятся итоги работы и обсуждаются направления даль-

нейших исследований.

2. Базис языка ABML

Язык ABML (Attribute-Based Modeling Language) предназначен для прототипирования

дискретных динамических систем, ориентированных на знания, структурированные в он-

тологиях. Он позволяет специфицировать как онтологии таких систем, так и правила

функционирования этих систем, меняющие как саму онтологию, так и ее содержимое.

Язык является лексическим расширением SBCL (Steel Bank Common Lisp) [21] – попу-

лярного диалекта Common Lisp. Мы выбираем язык из семейства Common Lisp в каче-

стве основы ABML как благодаря его хорошо развитым возможностям по встраиванию

предметно-ориентированных языков, так и для того, чтобы иметь возможность использо-

вать при необходимости напрямую лисповские средства.

ABML вводит в SBCL лишь небольшой набор дополнительных функций. Хотя боль-

шинство этих функций являются макросами, мы далее для универсальности будем ис-

пользовать термин функция.

Мы проектируем ABML как язык для онтологического моделирования дискретных ди-
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намических систем (далее – систем), в том числе информационных и программных си-

стем.

ABML основан на минимальном концептуальном фундаменте, состоящем из трех базо-

вых понятий – объекты, атрибуты и типы объектов:

• Объекты являются базовыми единицами для моделирования элементов и подсистем

системы. Существуют два вида объектов: изменяемые (mutable) и константные

(constant). Изменение атрибутов изменяемого объекта (добавление, удаление или

изменение атрибута) сохраняет идентичность объекта, тогда как любое изменение

атрибута константного объекта приводит к созданию нового константного объекта.

• Атрибуты определяют свойства и отношения объектов. Каждый атрибут имеет

имя, значение и тип, который ограничивает множество допустимых значений.

• Типы объектов классифицируют группы объектов, обладающих общими характери-

стиками, и соответствуют понятиям в онтологии.

3. Типы

Типы в ABML делятся на базовые типы и основанные на атрибутах типы объектов.

ABML поддерживает следующие базовые типы:

• lispt – множество значений Lisp;

• symbol – множество символов Lisp;

• atom – множество атомов Lisp;

• string – множество строк Lisp;

• int – множество целых чисел;

• nat – множество натуральных чисел (включая 0);

• real – множество вещественных чисел;

• (listt t) – списки элементов типа t;

• (uniont t1 ... tn) – объединение типов t1, ..., tn;

• (enumt v1 ... vn) – тип, состоящий из значений v1, ..., vn;

• (funt t1 ... tn t) – функции из t1 × . . .× tn в t;

• any – объединение всех базовых типов и типов объектов;

• bool – синоним any, подчеркивающий, что nil интерпретируется как ложь, а любое

значение, отличное от nil, – как истина.

Типы объектов делятся на типы изменяемых объектов и типы константных объек-
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тов.

Тип изменяемых объектов t′′ определяется как (mot ad1 ... adr), где декларации ат-

рибутов adj задают ограничения на значения атрибутов изменяемых объектов этого типа.

Пусть a′, t′, t′1, t′2 и v′ – значения выражений a, t, t1, t2 и v соответственно.

Существует четыре вида деклараций атрибутов:

1. :av a v – объявляет атрибут a′ со значением v′. Значение этого атрибута для любого

значения (называемого экземпляром) типа t′′ всегда равно v′.

2. :at a t – объявляет атрибут a′ с типом t′. Значение этого атрибута для любого

экземпляра типа t′′ должно принадлежать типу t′. На месте t может быть лямбда-

выражение с одним аргументом, выступающее в роли характеристической функции:

если на значение атрибута функция возвращает значение, отличное от nil, то такое

значение атрибута считается допустимым.

3. :atv a t v – объявляет атрибут a′ с типом t′ и значением по умолчанию v′. Поми-

мо ограничения, описанного в пункте (2), это объявление присваивает значение v′

атрибуту a′ во всех создаваемых экземплярах типа t′′, если иное значение не было

задано при создании экземпляра.

4. :amap t1 t2 – объявляет множество значений типа t′1 в качестве атрибутов, значения

которых принадлежат типу t′2. Значение любого атрибута a в экземпляре типа t′′

должно принадлежать t′2, если a является элементом t′1.

Тип константных объектов определяется как (cot ad1 ... adr), где объявления ат-

рибутов adj аналогичным образом задают ограничения на значения атрибутов констант-

ных объектов.

Для краткости обозначения

1 mot

2 cot

используются как сокращения для стандартных определений типов объектов

1 (mot)

2 (cot)

В ABML новые типы могут определяться с помощью конструкции (typedef n t), ко-

торая объявляет тип с именем n как синоним типа t. Для удобства используются сокра-

щенные формы
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1 (mot n ad1 ... adr)

2 (cot n ad1 ... adr)

вместо эквивалентных определений

1 (typedef n (mot ad1 ... adr))

2 (typedef n (cot ad1 ... adr))

4. Объекты

Объекты могут появляться в модели системы только через специальные функции, ко-

торые порождают экземпляры типов объектов.

Для изменяемых объектов функция генерации экземпляров имеет вид

1 (mo t ad1 ... adr),

где допускаются только объявления атрибутов вида :av a v. Эта функция создает новый

изменяемый объект o типа t и присваивает ему атрибуты и их значения в соответствии с

объявлениями атрибутов adj. Объект o также наследует все атрибуты со значениями по

умолчанию, определенные в типе t.

Генерация экземпляров типов объектов и последующие изменения их атрибутов и зна-

чений этих атрибутов подчиняется двум принципам.

Принцип ограниченности гласит, что присваиваемые атрибутам объекта значения долж-

ны удовлетворять ограничениям деклараций атрибутов типа, экземпляром которого этот

объект является.

Принцип открытости утверждает, что экземпляр любого типа объектов может содер-

жать атрибуты, явно не объявленные в этом типе, причем значения таких необъявленных

атрибутов ничем не ограничены.

ABML включает предопределенные функции для работы с изменяемыми объектами и

типами изменяемых объектов:

• (uid o) – возвращает уникальный идентификатор объекта o. Этот уникальный иден-

тификатор является натуральным числом, однозначно идентифицирующем этот объ-

ект – никакие два сгенерированных экземпляра типа изменяемых объектов не могут

иметь одинакового идентификатора;

• (imax t) – возвращает количество экземпляров типа t;



System Informatics (Системная информатика), No. 29 (2025) 143

• (otype o) – возвращает тип объекта o, т. е. (otype o) = t;

• (is-instance o t) – проверяет, является ли объект o экземпляром типа t;

• (attributes o) – возвращает список непустых атрибутов объекта o. Атрибут счи-

тается непустым, если его значение отличается от nil.

Для константных объектов функция генерации экземпляров имеет вид

1 (co t ad1 ... adr).

Все, что описано выше для изменяемых объектов, также применимо и к константным

объектам, за исключением того, что для них и их типов не определены функции uid и

imax, соответственно.

Для удобства используются сокращенные формы

1 (mo ad1 ... adr)

2 (co ad1 ... adr)

вместо эквивалентных определений

1 (mo mot ad1 ... adr)

2 (co cot ad1 ... adr)

5. Атрибуты

Для добавления новых деклараций атрибутов к типам объектов используется функция

1 (att t ad1 ... adr),

которая добавляет декларации атрибутов ad1, ..., adr к типу t.

Для получения значения атрибута a объекта o используется функция (aget o a). Для

установки значения v атрибута a объекта o применяется функция (aset o a v).

Эти функции также работают со списками (listt), где индексы трактуются как атри-

буты. В этом случае индекс не должен превышать длину списка при использовании aset

и должен быть строго меньше длины списка при использовании aget (так как индексация

списков начинается с 0). В противном случае возвращается ошибка.

Они поддерживают также работу с атрибутами на любом уровне вложенности

1 (aget o a1 ... an)

2 (aset o a1 ... an v)
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В этом случае, сначала вычисляется атрибут a1, затем вычисляется атрибут a2 на значении

v1 атрибута a1 и т. д.

Для вложенного вычисления атрибутов также применяются эквивалентные записи

1 (aget o (aseq a1 ... an))

2 (aset o (aseq a1 ... an) v)

с использованием формы (aseq a1 ... an).

Если список атрибутов явно не задан, вместо формы (aseq ...) используется форма

(aseql e). В этом случае список атрибутов вычисляется как значение выражения e.

Также имеется сокращенная форма

1 (aset o :av a1 v1 :av ... :av an vn)

эквивалентная вложенной форме

1 (aset (... (aset o a1 v1) ...) an vn)

представляющей последовательные применения функции aset.

Поведение функции aset зависит от того, применяется ли она к изменяемому или кон-

стантному объекту. Для изменяемых объектов функция обновляет значение указанного

атрибута без изменения самого объекта. В отличие от этого, при применении к констант-

ным объектам создается новый константный объект, идентичный исходному, за исключе-

нием обновленного значения атрибута. Для списков функция ведет себя так же, как и для

константных объектов.

Функция acall является атрибутно-ориентированным вариантом функции aget и трак-

тует атрибут как функцию:

• (acall a o) эквивалентна (aget o a);

• (acall a o v1 ... vs) применяет функцию с s аргументами, хранящуюся в атри-

буте a объекта o, к аргументам v1, ..., vs.

6. Сопоставление с образцом

Язык ABML имеет развитые средства сопоставления с образцом, основанные на сопо-

ставителях (matchers) вида

1 (match c1 ... cr)

2 (nmatch c1 ... cr)
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которые состоят из последовательности клозов сопоставления cj и реализуют чередова-

ние сопоставления с образцом и действий, выполняемых при успешном или неуспешном

сопоставлении.

Клозы сопоставления делятся на три категории: клозы атрибутов, клозы выражений

и клозы действий.

Пусть e′, a′, v′ и t′ обозначают значения e, a, v и t, соответственно.

Клозы атрибутов выполняют сопоставление значений атрибутов. ABML поддерживает

три вида клозов атрибутов:

1. :av e a v – сопоставление успешно, если e′ является объектом и его атрибут a′ имеет

значение v′.

2. :at e a t – сопоставление успешно, если e′ является объектом и значение его атри-

бута a′ принадлежит типу t′.

3. :ap e a p – сопоставление успешно, если e′ является объектом. Параметру p, назы-

ваемую параметром сопоставителя, присваивается значение e′.
Формы (aseq a1 ... an) и (aseql e) также могут использоваться вместо одиночных

атрибутов.

Клозы выражений выполняют сопоставление значений выражений. ABML поддерживает

три вида клозов выражений:

1. :v e v – сопоставление успешно, если e′ равно v′.

2. :t e t – сопоставление успешно, если e′ принадлежит типу t′.

3. :p e p – сопоставление всегда успешно. Параметру сопоставителяp присваивается

значение e′.

Клозы действий задают действия, выполняемые при успешном или неуспешном сопостав-

лении. ABML поддерживает два вида клозов действий:

1. :do e1 ... em – последовательно вычисляет выражения ej. Эти выражения могут

использовать параметры сопоставителя. После вычисления выражений сопоставле-

ние продолжается.

2. :exit e1 ... em – последовательно вычисляет выражения ej. Эти выражения мо-

гут использовать параметры сопоставителя. После вычисления выражений сопоста-

витель завершает работу, возвращая последнее вычисленное значение.

Сопоставители помимо возвращения значения, также возвращают признак того, успеш-

но ли прошло сопоставление или нет. Поэтому их можно использовать на месте клозов
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атрибутов и выражений, обеспечивая таким образом вложенные сопоставления.

Сопоставитель match последовательно вычисляет клозы сопоставления, входящие в

него по следующим правилам:

1. Если очередной клоз является клозом атрибутов, клозом выражений или сопостави-

телем, и успешно сопоставляется, то переходим к вычислению следующего клоза.

2. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, сопоставление терпит неудачу, и оставшаяся последовательность клозов

содержит exit-клоз, то вычисляем ближайший exit-клоз и завершаем работу сопо-

ставителя с признаком успешного сопоставления.

3. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, сопоставление терпит неудачу, и оставшаяся последовательность клозов не

содержит exit-клозов, то завершаем работу сопоставителя с признаком неудачного

сопоставления.

4. Если очередной клоз является do-клозом, то вычисляем его и переходим к вычисле-

нию следующего клоза.

5. Если очередной клоз является exit-клозом, то пропускаем его и переходим к вычис-

лению следующего клоза.

6. Если клозов больше нет, то завершаем работу сопоставителя с признаком неудачного

сопоставления.

Сопоставитель nmatch также как и match последовательно вычисляет клозы сопостав-

ления, но действует противоположным образом:

1. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, сопоставление терпит неудачу, то переходим к вычислению следующего

клоза.

2. Если очередной клоз является клозом атрибутов, клозом выражений или сопостави-

телем, и успешно сопоставляется, и оставшаяся последовательность клозов содержит

exit-клоз, то вычисляем ближайший exit-клоз и завершаем работу сопоставителя

с признаком успешного сопоставления.

3. Если очередной клоз является клозом атрибутов, клозом выражений или сопоста-

вителем, успешно сопоставляется, и оставшаяся последовательность клозов не со-

держит exit-клозов, то завершаем работу сопоставителя с признаком неудачного

сопоставления.
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4. Если очередной клоз является do-клозом, то вычисляем его и переходим к вычисле-

нию следующего клоза.

5. Если очередной клоз является exit-клозом, то пропускаем его и переходим к вычис-

лению следующего клоза.

6. Если клозов больше нет, то завершаем работу сопоставителя с признаком неудачного

сопоставления.

7. Атрибутные замыкания

В дополнение к способам вычисления значений атрибутов, описанным выше, ABML

предоставляет механизм связывания атрибутов со значениями (экземплярами) любых ти-

пов и вычисления этих атрибутов в фиксированном контексте с использованием атри-

бутных замыканий.

Атрибутное замыкание задает:

• вычисляемый атрибут,

• конкретный экземпляр типа, для которого вычисляется этот атрибут,

• а также конечное множество дополнительных параметров вместе с их значениями

(называемое контекстом вычисления атрибута), которые влияют на вычисление ат-

рибута.

Замыкания атрибутов представляются в виде константных объектов.

Константный объект ac называется атрибутным замыканием относительно атрибута

a и типа t, если выполняются следующие условия:

• (aget ac "attribute") = a

• (aget ac "instance") = i, где i является экземпляром типа t.

Остальные атрибуты объекта ac образуют контекст вычисления атрибута a.

Способ вычисления атрибутных замыканий задается декларацией атрибутного замы-

кания одного из следующих видов:

1 (aclosure ac :attribute a :type t :instance i s1 s2 s3 :do e1 ... er)

2 (aclosure ac :attribute a :type t :instance i s1 s2 s3

3 :match c1 ... cr)

4 (aclosure ac :attribute a :type t :instance i s1 s2 s3

5 :nmatch c1 ... cr)
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где s1, s2 и s3 имеют вид

1 :a1 p1 ... :an pn

2 :ap w1 b1 q1 ... :ap wm bm qm

3 :p u1 t1 ... :p uk tk

соответственно.

Результат вычисления атрибутного замыкания ac для атрибута a и типа t определяется

λ-функцией (lambda (ac) b), где тело b имеет вид

1 (match :ap ac "instance" i :ap ac a1 p1 ... :ap ac an pn

2 :ap w1 b1 q1 ... :ap wm bm qm :p u1 t1 ... :p uk tk :do e1 ... er)

3

4 (match :ap ac "instance" i :ap ac a1 p1 ... :ap ac an pn

5 :ap w1 b1 q1 ... :ap wm bm qm :p u1 t1 ... :p uk tk c1 ... cr)

6

7 (match :ap ac "instance" i :ap ac a1 p1 ... :ap ac an pn

8 :ap w1 b1 q1 ... :ap wm bm qm :p u1 t1 ... :p uk tk

9 (nmatch c1 ... cr))

соответственно. Здесь выражения e1, ..., er, c1, ..., cr могут зависеть от параметров

i, ac, p1, ..., pn, q1, ..., qm, t1, ..., tk.

Часть :instance i s1 s2 s3 декларации атрибутного замыкания называется префиксом

декларации. Элементы префикса могут как переставляться (при этом соответствующим

образом переставляются элементы в λ-функции), так и опускаться. Часть декларации,

следующая за префиксом, называется телом декларации.

Декларация атрибутного замыкания задает способ вычисления, а само вычисление вы-

полняется функцией (eval-aclosure ac). Напомним, что вычисление атрибутного замы-

кания ac эквивалентно вычислению значения атрибута (aget ac "attribute").

Помимо функции (eval-aclosure ac) над атрибутными замыканиями определены сле-

дующие функции:

• (clear-aclosure ac) – удаляет все атрибуты у атрибутного замыкания ac кроме

"attribute" и "instance", т. е. контекст вычисления атрибута в ac;

• (update-eval-aclosure ac ...) – сначала выполняет (aset ac ...), модифицируя

значения атрибутов замыкания ac, а затем (update-eval-aclosure ac′) для моди-
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фицированного замыкания ac′;

• (clear-update-eval-aclosure ac ...) – сначала выполняет (clear-aclosure ac),

удаляя контекст вычисления атрибута в замыкании ac, а затем

(update-eval-aclosure ac′ ...) для модифицированного замыкания ac′.

В следующих разделах будет рассмотрен такой пример дискретной динамической си-

стемы как сушилка для рук и для нее на языке ABML будет построена онтология (онто-

логическая модель) и правила первого запуска этой системы и ее дальнейшего функцио-

нирования.

8. Онтология сушилки для рук

Онтология (или онтологическая модель) сушилки для рук определяется тремя типами

изменяемых объектов.

Тип "system" определяет сушилку как систему, состоящую из сенсора и контроллера:

1 (mot "system"

2 :at "controller" "controller"

3 :at "sensor" "sensor")

Тип "sensor" описывает сенсор через его состояние, моделирующее замечены руки или

нет:

1 (mot "sensor"

2 :at "state" (enumt "detected" "not detected"))

Тип "controller" моделирует контроллер, определяя такие его компоненты как

• связанный с ним сенсор "sensor";

• состояние "state", в котором находится контроллер (режим его работы);

• константы "maximum drying time" и "cooling time", характеризующие максималь-

ное время непрерывной работы сушилки и время охлаждения сушилки, заданные

для простоты числом тактов работы контроллера;

• локальные часы "local clock", подсчитывающие количество тактов, которые кон-

троллер непрерывно находился в состоянии сушки или состоянии охлаждения.

Он задается следующим образом:

1 (mot "controller"
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2 :at "sensor" "sensor"

3 :at "local clock" nat

4 :at "state" (enumt "waiting" "drying" "cooling")

5 :av "maximum drying time" 100000

6 :av "cooling time" 1000)

Конкретная сушилка для рук (точнее ее состояние в определенной момент времени)

может, например, быть задана (порождена) следующим образом:

1 (match

2 :p (mo "sensor" :av "state" "not detected") sen

3 :p (mo "controller"

4 :av "sensor" sen

5 :av "local clock" 0

6 :av "state" "waiting") cont

7 (mo "system" :av "controller" cont :av "sensor" sen))

Это выражение возвращает экземпляр типа "system".

Заметим, что конечные наборы экземпляров типов можно рассматривать как граф

знаний, в котором вершины помечены этими экземплярами и значениями базовых типов, а

дуги помечены именами атрибутов и ведут от объекта, для которого вычисляется атрибут

к значению этого атрибута.

В данном примере, граф знаний, соответствующий состоянию сушилки для рук, опре-

деленному выше, имеет вид как на Рис.1.

9. Запуск сушилки

Запуск сушилки моделируется декларацией атрибутного замыкания для атрибута "init"

и типа "system":

1 (aclosure ac :attribute "init" :type "system" :instance i

2 :match

3 :ap i "sensor" sen :ap i "controller" cont

4 :do

5 (aset sen "state" "not detected")
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Рис. 1: Граф знаний для состояния сушилки для рук

6 (aset cont :av "sensor" sen :av "state" "waiting" :av "local

clock" 0))

Эта декларация присваивает начальные значения атрибутам компонент sen и cont системы

i.

10. Функционирование сушилки

Функционирование сушилки также моделируется через декларации атрибутных замы-

каний.

Декларации для атрибута "step" определяет один такт работы системы и ее компонент.

Для системы целиком она определяется как

1 (aclosure ac :attribute "step" :type "system" :instance i :do

2 (update-eval-aclosure ac :av "instance" (aget i "sensor"))

3 (update-eval-aclosure ac :av "instance" (aget i "controller")))
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Сначала выполняется такт сенсора с получением данных из окружающей среды, а затем

такт контроллера на полученных данных.

Шаг для сенсора состоит в получении случайных данных и моделируется с помощью

функции random-list-element, выбирающей случайное значение из списка:

1 (aclosure ac :attribute "step" :type "sensor" :instance i

2 :do (aset i "state" (random-list-element

3 (list "detected" "not detected"))))

Шаг контроллера состоит в определении его состояния и запуска соотвествуюшего ре-

жима функционирования (ожидание, сушка, пассивное охлаждение) в данном состоянии:

1 (aclosure ac :attribute "step" :type "controller" :instance i

2 :match :ap i "state" s (nmatch

3 :v s "waiting"

4 :exit (update-eval-aclosure ac :av "attribute" "waiting")

5 :v s "drying"

6 :exit (update-eval-aclosure ac :av "attribute" "drying")

7 :v s "cooling"

8 :exit (update-eval-aclosure ac :av "attribute" "cooling")))

Режим ожидания задается следующей декларацией:

1 (aclosure ac :attribute "waiting" :type "controller" :instance i

2 :match :av i (aseq "sensor" "state") "detected"

3 :do (aset i :av "state" "drying" :av "local clock" 0))

В этом режиме отслеживается срабатывание датчика и переход контроллера в этом случае

в состояние сушки с обнулением локального времени.

В режиме сушки, задаваемом декларацией

1 (aclosure ac :attribute "drying" :type "controller" :instance i

2 :nmatch

3 :v (< (aget i "local clock")

4 (aget i "maximum drying time")) T

5 :exit (aset i :av "state" "cooling" :av "local clock" 0)

6 :av i (aseq "sensor" "state") "not detected"
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7 :exit (aset i "state" "waiting")

8 :do (aset i "local clock" (+ (aget i "local clock") 1)))

сначала выполняется проверка не превышен ли лимит непрерывной сушки. Если лимит

превышен, контроллер переходит в режим пассивного охлаждения с обнулением локаль-

ного времени. В противном случае, проверяется состояние датчика и если он ничего не

обнаруживает, то контроллер переходит в состояние ожидания. Если ни одно из выше

проверяемых условий не выполнено, то увеличивается время локальных часов на 1 (один

такт). Заметим, что в случае перехода в состояние ожидания время не сбрасывается в

ноль, так как для этого состояния время локальных часов не учитывается.

Декларация, моделирующая режим пассивного охлаждения, определяется аналогич-

ным образом:

1 (aclosure ac :attribute "cooling" :type "controller" :instance i

2 :nmatch

3 :v (< (aget i "local clock")

4 (aget i "cooling time")) T

5 :exit (aset i "state" "waiting")

6 :do (aset i "local clock" (+ (aget i "local clock") 1)))

Таким образом, мы построили как модель состояний такой системы как сушилка для

рук, так и модель функционирования этой системы в терминах онтологии.

11. Родственные работы

Исследования, посвящённые формальному описанию знаний и динамики систем, ведут-

ся в нескольких взаимосвязанных направлениях, включая онтологическое моделирование,

языки спецификации динамических и реактивных систем, предметно-ориентированные

языки (DSL), а также подходы, основанные на графах знаний и атрибутных вычислениях

[18, 20, 24]. Язык ABML находится на пересечении этих направлений, объединяя элементы

онтологий, типизированных объектных моделей и механизмов описания поведения.

Онтологические языки и представление знаний. Наиболее распространённым фор-

мализмом для представления онтологий является семейство языков, основанных на де-

скриптивных логиках, прежде всего OWL (Web Ontology Language) [5, 7, 9]. Эти языки
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обеспечивают строгую семантику, поддержку логического вывода и широко применяются

в задачах семантического веба и интеграции знаний [8, 18]. Однако OWL и родствен-

ные ему формализмы ориентированы преимущественно на статическое описание знаний

и обладают ограниченными возможностями для моделирования динамики и изменения

состояний объектов во времени [2].

Для расширения онтологического подхода в сторону описания поведения разрабатыва-

лись различные онтологические модели процессов и событий, включая OWL-S и SOSA/SSN

[18, 20, 23, 24]. Эти модели позволяют описывать действия, события и наблюдения, но, как

правило, не предоставляют формального механизма исполнения или пошагового модели-

рования динамических систем. В отличие от них, ABML изначально ориентирован на мо-

делирование дискретной динамики и допускает явное описание шагов функционирования

системы.

Языки спецификации динамических и реактивных систем. Значительный пласт

родственных работ связан с языками спецификации динамических, реактивных и кибер-

физических систем [6]. Классическими примерами являются языки временной логики,

такие как LTL и CTL [19], а также формализмы на основе автоматов и систем переходов

[4]. Эти подходы широко используются для верификации свойств систем, однако они слабо

приспособлены для непосредственного описания сложных структур знаний и онтологий.

Языки спецификации, такие как Event-B и TLA+ [11, 16], предлагают строгие матема-

тические средства для описания состояний и переходов, но требуют значительных усилий

для моделирования предметной области на уровне объектов и атрибутов. В отличие от

перечисленных формализмов, ABML ориентирован на знание-центричный подход, в кото-

ром онтологическая структура системы и динамика её функционирования описываются в

рамках единого атрибутного формализма.

Объектно-ориентированные и атрибутно-ориентированные модели. Многие идеи

ABML перекликаются с объектно-ориентированным моделированием и индустриальными

языками моделирования, такими как UML и SysML [17]. В этих языках объекты, атри-

буты и состояния играют центральную роль, однако формальная семантика большинства

их конструкций либо задаётся неявно, либо выходит за рамки стандартов, а средства

исполнения моделей, как правило, носят ограниченный или инструментально-зависимый

характер (см, например, [3, 15, 22]).
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Атрибутно-ориентированные подходы к моделированию рассматривались, в частности,

в контексте систем правил и продукционных систем, где вычисление значений атрибутов

определяется набором явно заданных зависимостей и условий [12]. В таких системах вы-

числение значений атрибутов может зависеть от контекста и состояния других объектов.

ABML развивает эти идеи, вводя формализованный механизм атрибутных замыканий,

который позволяет явно задавать контекст вычисления и связывать его с конкретным

экземпляром типа.

Предметно-ориентированные языки и Lisp-подобные системы. Разработка ABML

как расширения Common Lisp тесно связана с традицией создания предметно-ориентиро-

ванных языков (DSL) [13]. Lisp и его диалекты исторически используются для создания

языков моделирования и спецификации благодаря мощной макросистеме и однородному

синтаксису [1].

Существуют Lisp-ориентированные системы для представления знаний и онтологий, та-

кие как Loom и OCML, которые предоставляют средства описания понятий и отношений.

Однако они, как правило, либо ориентированы на логический вывод, либо не поддержи-

вают явное моделирование дискретной динамики. ABML отличается тем, что сочетает

декларативное описание структуры знаний с процедурным описанием поведения.

Графы знаний и вычисления на графах. В последние годы активно развиваются

подходы, основанные на графах знаний, где информация представляется в виде вершин и

дуг с семантической интерпретацией [10]. Графы знаний используются в интеллектуаль-

ных системах, анализе данных и моделировании сложных взаимосвязей. В этом контексте

модель ABML может интерпретироваться как граф знаний, в котором объекты и значения

образуют вершины, а атрибуты — помеченные рёбра.

Отличительной особенностью ABML является то, что вычисления и изменения состо-

яния системы формализуются как преобразования такого графа знаний во времени. Это

сближает ABML с подходами, основанными на трансформациях графов [14], но при этом

сохраняет удобство атрибутного и типизированного моделирования.

Итоги сравнения. Таким образом, существующие родственные работы либо фокусиру-

ются на статическом представлении знаний, либо на формальной спецификации динамики

без явной онтологической структуры. Язык ABML занимает промежуточную позицию,
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предлагая унифицированный формализм для онтологического моделирования и описа-

ния дискретной динамики систем. Его атрибутно-ориентированный подход и механизм

атрибутных замыканий позволяют выразить широкий класс моделей, что отличает его от

большинства существующих решений.

12. Заключение

В работе представлен язык ABML, предназначенный для спецификации дискретных

динамических систем, ориентированных на знания, структурированные в онтологиях.

Язык объединяет онтологическое моделирование и формальное описание поведения си-

стем в рамках единого, компактного и выразительного формализма.

Основным достоинством ABML является минимальный, но универсальный концепту-

альный базис, включающий объекты, атрибуты и типы объектов. Разделение объектов

на изменяемые и константные позволяет явно задавать семантику изменений и облегча-

ет моделирование эволюции состояний системы. Атрибутно-ориентированная типизация

обеспечивает гибкий механизм задания ограничений и классификации объектов, соответ-

ствующий онтологическому подходу.

Развитые средства работы с атрибутами, включая вложенный доступ, массовое об-

новление и интерпретацию атрибутов как функций, делают язык удобным для описания

сложных структур знаний. Механизмы сопоставления с образцом позволяют компактно

и наглядно формулировать правила функционирования систем, а также реализовывать

условные переходы между состояниями.

Ключевым элементом языка является механизм атрибутных замыканий, который обес-

печивает контекстно-зависимое вычисление атрибутов и служит основой для моделиро-

вания дискретной динамики. Использование атрибутных замыканий позволяет рассмат-

ривать поведение системы как последовательность вычислений атрибутов, что хорошо

согласуется с онтологической интерпретацией модели в виде графа знаний.

Пример моделирования сушилки для рук наглядно демонстрирует практическую при-

менимость ABML. В рамках одного языка удалось задать онтологию системы, ее началь-

ное состояние и правила функционирования, описывающие поведение сенсора и контрол-

лера во времени. Это подтверждает, что ABML может использоваться для прототипи-

рования и анализа поведения реальных технических, информационных и программных

систем.
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В перспективе язык ABML может быть расширен средствами верификации, анализа

свойств моделей и интеграции с внешними онтологическими и логическими инструмента-

ми. Такой подход делает ABML перспективным средством для исследования и разработки

интеллектуальных систем, основанных на знаниях и онтологиях.
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10. Ehrlinger L., Wöß W. Towards a definition of knowledge graphs. // SEMANTiCS (Posters,

Demos, SuCCESS). — 2016. — Vol. 48, no. 1-4. — P. 2.



158 Ануреев И.С. Язык спецификации дискретных динамических систем, ориентированных на знания, ...

11. Farrell M., Monahan R., Power J. F. Building specifications in the Event-B institution //

Logical Methods in Computer Science. — 2022. — Vol. 18.

12. Forgy C. L. Rete: A fast algorithm for the many pattern/many object pattern match

problem // Readings in artificial intelligence and databases. — Elsevier, 1989. — P. 547–

559.

13. Fowler M. Domain-specific languages. — Pearson Education, 2010.

14. Fundamentals of algebraic graph transformation / Ehrig H., Ehrig K., Prange U., and

Taentzer G. — Springer, 2006.

15. Kleppe A. G., Warmer J. B., Bast W. MDA explained: the model driven architecture:

practice and promise. — Addison-Wesley Professional, 2003.

16. Lamport L. Specifying systems. — Addison-Wesley Boston, 2002. — Vol. 388.

17. Merging OMG standards in a general modeling, transformation, and simulation

framework. / Schneider V., Yupatova A., Dulz W., and German R. // SimuTools. — 2015. —

P. 299–301.

18. Ontologies in digital twins: A systematic literature review / Karabulut E., Pileggi S. F.,

Groth P., and Degeler V. // Future Generation Computer Systems. — 2024. — Vol. 153. —

P. 442–456.

19. Pnueli A. The temporal logic of programs // 18th annual symposium on foundations of

computer science (sfcs 1977) / ieee. — 1977. — P. 46–57.

20. Representing Time-Continuous Behavior of Cyber-Physical Systems in Knowledge Graphs /

Gill M. S., Jeleniewski T., Gehlhoff F., and Fay A. // arXiv preprint arXiv:2506.13773. —

2025.

21. Rhodes C. SBCL: A sanely-bootstrappable Common Lisp // Workshop on Self-sustaining

Systems / Springer. — 2008. — P. 74–86.

22. Rumpe B. Agile modeling with UML: Code generation, testing, refactoring. — Springer,

2017.

23. The SSN ontology of the W3C semantic sensor network incubator group / Compton M.,

Barnaghi P., Bermudez L., Garcia-Castro R., Corcho O., Cox S., Graybeal J., Hauswirth M.,

Henson C., Herzog A., et al. // Journal of Web Semantics. — 2012. — Vol. 17. — P. 25–32.

24. Наместников А.М. Применение онтологического подхода в задаче генерации собы-

тийных данных с помощью имитационных моделей // Онтология проектирования. —

2023. — Vol. 13, no. 2 (48). — P. 243–253.


	Введение
	Базис языка ABML
	Типы
	Объекты
	Атрибуты
	Сопоставление с образцом
	Атрибутные замыкания
	Онтология сушилки для рук
	Запуск сушилки
	Функционирование сушилки
	Родственные работы
	Заключение

