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Conceptual transition systems and their application to 

development of conceptual models of programming languages* 

Anureev I.S. (Institute of Informatics Systems), 

Promsky A.V. (Institute of Informatics Systems) 

In the paper the notion of the conceptual model of a programming language is proposed. This 

formalism represents types of the programming language, values, exceptions, states and 

executable constructs of the abstract machine of the language, and the constraints for these entities 

at the conceptual level. The new definition of conceptual transition systems oriented to 

specification of conceptual models of programming languages is presented, the language of 

redefined conceptual transition systems CTSL is described, and the technique of the use of  CTSL 

as a domain-specific language of specification of conceptual models of programming languages 

is proposed. The conceptual models for the family of sample programming languages illustrate 

this technique. 
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conceptual model, domain-specific language 

1. Introduction 

This paper relates to the development of operational semantics of programming languages. 

Following [1], we distinguish two parts of the operational semantics of a programming language. The 

structural part defines how the elements of the language relate to runtime elements that an abstract 

machine of the programming language can use at runtime. The structural part is called instantiation 

semantics or structure-only semantics [2]. The dynamic part describes the actual state changes that 

take place at runtime. 

In traditional operational semantics approaches [3–6], the main focus is on state changes, while 

the structural part is defined ad-hoc. The modern programming languages becomes more complex. 

Therefore, development of formalisms, languages and frameworks to describe the instantiation 

semantics is very important problem. 
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The meta-model-based object-oriented approach [1] to description of the instantiation semantics 

uses MOF (EMF) [7]. The algebraic approach [8] is based on abstract state machines. Abstract state 

machines are the special kind of transition systems in which states are algebraic systems. The 

structural part of the operational semantics is flexibly modelled by the appropriate choice of the 

symbols of the signature of an algebraic system. Rewrite-based approach is implemented in the 

frameworks K [9] and Maude [10]. 

These approaches do not take into account the natural conceptual nature of instantiation semantics 

which is easier to describe in the ontological terms of concepts, their instances and attributes. 

In this paper, we introduce the notion of the conceptual model of a programming language. This 

formalism describes the instantiation semantics at the conceptual level. The conceptual model is 

specified in terms of conceptual transition systems (CTSs) [11] in the language of conceptual 

transition systems CTSL [12]. Thus, CTSL acts as a domain-specific language oriented to 

specification of conceptual models of programming languages. 

The paper has the following structure. The preliminary concepts and notation are given in section 

2. The new definition of CTSs is presented in section 3. The basic definitions of the theory of CTSs 

are given in sections 4 and 5. The language CTSL for redefined CTSs is described in section 6. The 

definition of the conceptual model of a programming language is introduced, and the technique of 

development of conceptual models of programming languages is illustrated by the sample 

programming language examples in section 7.    

2. Preliminaries 

The preliminary concepts and notation are given in this section. 

2.1. Sets and sequences 

Let $𝑤, $𝑤1, $𝑤2, … denote elements of the sort 𝑤, where 𝑤 is a word, and $$𝑤 denote the set 

of all elements of the sort 𝑤. For example, if 𝑛 is a sort of natural numbers, then $𝑛, $𝑛1, … are 

natural numbers, and $$n is the set of all natural numbers. 

Let $$𝑜 and $$𝑠𝑒𝑡 be sets of objects and sets considered in this paper. Let $$𝑖, $$𝑛, and $$𝑏𝑜 be 

sets of integers, natural numbers (with zero), and boolean values 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒. 

Let $$𝑠𝑒 denote the set of finite sequences of the form $𝑜1 …  $𝑜$𝑛. Let $$𝑤∗ denote the set of 

finite sequences of the form $𝑤1 … $𝑤$𝑛, and $𝑤∗, $𝑤∗1, $𝑤∗2, and so on denote the elements of 

the set $$𝑤∗. Let [𝑒𝑠] denote the empty sequence. Let $$𝑤+ denote the set of finite nonempty 

sequences of the form $𝑤1 … $𝑤$𝑛, and $𝑤+, $𝑤+1, $𝑤+2, and so on denote the elements of the 

set $$𝑤+. 
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Let [𝑟𝑒𝑝𝑒𝑎𝑡 $𝑜 $𝑛] denote the sequence consisting of $𝑛-th occurrences of the object $𝑜.  

Let [$𝑜 ∈ $𝑠𝑒] and [$𝑠𝑒1 ⊑ $𝑠𝑒2] denote $𝑜 ∈ {$𝑠𝑒} and {$𝑠𝑒1} ⊑ {$𝑠𝑒2}. Let [𝑙𝑒𝑛 $𝑠𝑒] denote 

the length of $se. Let 𝑢𝑛𝑑 denote the undefined value. Let [$𝑠𝑒 . .  $𝑛] denote the $𝑛-th element of 

$𝑠𝑒. If [𝑙𝑒𝑛 $𝑠𝑒] < $𝑛, then [$𝑠𝑒 . .  $𝑛] = 𝑢𝑛𝑑. Let [$𝑠𝑒 . .  $𝑛 : =  $𝑜] denote the result $𝑠𝑒1 of 

replacement of $𝑛-th element in $𝑠𝑒 by $𝑜. If $𝑛 > [𝑙𝑒𝑛 $𝑠𝑒], then $𝑠𝑒1 =

$𝑠𝑒 [𝑟𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑑 [[𝑙𝑒𝑛 $𝑠𝑒] − $𝑛 − 1]] $𝑜.  

Let [$𝑜 ∈ $𝑠𝑒] and [$𝑠𝑒1 ⊑ $𝑠𝑒2] denote $𝑜 ∈ {$𝑠𝑒} and {$𝑠𝑒1} ⊑ {$𝑠𝑒2}. Let [𝑙𝑒𝑛 $𝑠𝑒] denote 

the length of $se. Let 𝑢𝑛𝑑 denote the undefined value. Let [$𝑠𝑒 . .  $𝑛] denote the $𝑛-th element of 

$𝑠𝑒. If [𝑙𝑒𝑛 $𝑠𝑒] < $𝑛, then [$𝑠𝑒 . .  $𝑛] = 𝑢𝑛𝑑. Let [$𝑠𝑒 . .  $𝑛 : =  $𝑜] denote the result $𝑠𝑒1 of 

replacement of $𝑛-th element in $𝑠𝑒 by $𝑜. If $𝑛 = [𝑙𝑒𝑛 $𝑠𝑒] + 1, then $𝑠𝑒1 = $𝑠𝑒 $𝑜. If $𝑛 >

[𝑙𝑒𝑛 $𝑠𝑒] + 1, then $𝑠𝑒1 = 𝑢𝑛𝑑.  

Let [$𝑜1 ≺⟦$𝑠𝑒⟧ $𝑜2] denote the fact that there exist $𝑜∗1, $𝑜∗2 and $𝑜∗3 such that $𝑠𝑒 =

$𝑜∗1 $𝑜1 $𝑜∗2 $𝑜2 $𝑜∗3. 

Let [$𝑜 $𝑜1 ↩  $𝑜2] denote the result of replacement of all occurrences of $𝑜1 in $𝑜 by $𝑜2. Let 

[$𝑠𝑒 $𝑜 ↩∗  $𝑜1] denote the result of replacement of each element $𝑜2 in $𝑠𝑒 by [$𝑜1 $𝑜 ↩  $𝑜2]. 

For example, [𝑎 𝑏 𝑥 ↩∗  (𝑓 𝑥)] denotes (𝑓 𝑎) (𝑓 𝑏). 

Let $𝑜1,  $𝑜2 ∈ $$𝑠𝑒 ∪ $$𝑠𝑒𝑡. Then [$𝑜1 =𝑠𝑒𝑡 $𝑜2] denote that the sets of elements of $𝑜1 and 

$𝑜2 coincide, and [$𝑜1 =𝑚𝑢𝑙 $𝑜2] denote that the multisets of elements of $𝑜1 and $𝑜2 coincide. 

The above defined operations on the set $$𝑠𝑒 are also applied to the set {($𝑠𝑒) | $𝑠𝑒 ∈ $$𝑠𝑒}. The 

results of  [($𝑠𝑒) . .  $𝑛], [$𝑜 ∈ ($𝑠𝑒)], [($𝑠𝑒1) ⊑ ($𝑠𝑒2)], [$𝑜1 ≺⟦($𝑠𝑒)⟧ $𝑜2], [($𝑠𝑒) $𝑜 ↩∗ $𝑜1], 

[𝑙𝑒𝑛 ($𝑠𝑒)], [($𝑠𝑒) . .  $𝑛 ≔ $𝑜] and [𝑎𝑛𝑑 ($𝑠𝑒)] are [$𝑠𝑒 . .  $𝑛], [$𝑜 ∈ $𝑠𝑒], [$𝑠𝑒1 ⊑ $𝑠𝑒2], 

[$𝑜1 ≺⟦$𝑠𝑒⟧ $𝑜2], [$𝑠𝑒 $𝑜 ↩∗ $𝑜1], [𝑙𝑒𝑛 $𝑠𝑒], [$𝑠𝑒 . .  $𝑛 ≔ $𝑜] and [𝑎𝑛𝑑 $𝑠𝑒]. 

Let [(𝑜∗) + ($𝑜∗1)], [$𝑜 . +(𝑜∗)] and [(𝑜∗) +.  $𝑜] denote ($𝑜∗ $𝑜∗1), ($𝑜 $𝑜∗) and ($𝑜∗ $𝑜). 

2.2. Contexts 

The terms used in the paper can be context-dependent. A context has the form ⟦$𝑜∗⟧. The elements 

of $𝑜∗ are called embedded contexts. The context in which some embedded contexts are omitted is 

called a partial context. All omitted embedded contexts are considered bound by the existential 

quantifier, unless otherwise specified. 

Let $o⟦$𝑜∗⟧  denote the object $o in the context ⟦$𝑜∗⟧. The expression 'in ⟦$𝑜1,  $𝑜∗⟧' can be 

rewritten as 'in ⟦$𝑜1⟧ in ⟦$𝑜∗⟧', if this does not lead to ambiguity. 
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2.3. Functions 

Let $$𝑓 be a set of functions. Let $$𝑎 and $$𝑣 be sets of objects called arguments and values. Let 

[$𝑓 𝑎∗] denote the result of application of $𝑓 to $𝑎∗. Let [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] denote the support in ⟦$𝑓⟧, i. 

e. [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] = {$𝑎 | [$𝑓 $𝑎] ≠ 𝑢𝑛𝑑}. Let [𝑖𝑚𝑎𝑔𝑒 $𝑓 $𝑠𝑒𝑡] denote the image in ⟦$𝑓,  $𝑠𝑒𝑡⟧, i. e. 

[𝑖𝑚𝑎𝑔𝑒 $𝑓 $𝑠𝑒𝑡] = {[$𝑓 $𝑎] : $𝑎 ∈ $𝑠𝑒𝑡}. Let [𝑖𝑚𝑎𝑔𝑒 $𝑓] denote the image in ⟦$𝑓,  [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓]⟧. 

Let [𝑛𝑎𝑟𝑟𝑜𝑤 $𝑓 $𝑠𝑒𝑡] denote the function $𝑓1 such that [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1] = [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] ∩ $𝑠𝑒𝑡, 

and [$𝑓1 $𝑎] = [$𝑓 $𝑎] for each $𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1]. The function $𝑓1 is called a narrowing of $𝑓 

to $𝑠𝑒𝑡. Let [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1] ∩ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓2] = ∅. Let $𝑓1 ∪ $𝑓2 denote the union $𝑓 of $𝑓1 and 

$𝑓2 such that [$𝑓 $𝑎] = [$𝑓1 $𝑎] for each $𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1], and [$𝑓 $𝑎] = [$𝑓2 $𝑎] for each 

$𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓2]. Let $𝑓1 ⊆ $𝑓2 denote the fact that [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1] ⊆ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓2], and 

[$𝑓1 $𝑎] = [$𝑓2 $𝑎] for each $𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1]. 

An object $𝑢 of the form $𝑎 : = $𝑣 is called an update. The objects $𝑎 and $𝑣 are called an 

argument and values in ⟦$𝑢⟧. Let $$𝑢 be a set of updates. 

Let [$𝑓 $𝑢] denote the function $𝑓1 such that [$𝑓1 $𝑎] = [$𝑓 $𝑎] if $𝑎 ≠ $𝑎⟦$𝑢⟧, and 

[$𝑓1 $𝑎⟦$𝑢⟧] = $𝑣⟦$𝑢⟧. Let [$𝑓 $𝑢 $𝑢∗] be a shortcut for [[$𝑓 $𝑢] $𝑢∗]. Let 

[$𝑓 $𝑎. $𝑎1.  …  . $𝑎$𝑛 ≔ $𝑣] be a shortcut for [$𝑓 $𝑎 ≔ [[$𝑓 $𝑎] $𝑎1.  …  . $𝑎$𝑛 ≔ $𝑣]]. Let [$𝑢∗] 

be a shortcut for [$𝑓 $𝑢∗], where [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] = ∅. 

Let [𝑖𝑓 $𝑐𝑜𝑛 𝑡h𝑒𝑛 $𝑜1 𝑒𝑙𝑠𝑒 $𝑜2] denote the object $𝑜 such that $𝑜 = $𝑜1 for $𝑐𝑜𝑛 = 𝑡𝑟𝑢𝑒, and 

$𝑜 = $𝑜2 for $𝑐𝑜𝑛 = 𝑓𝑎𝑙𝑠𝑒. 

3. Conceptual transition systems 

The notion of conceptual transition systems (CTSs) is based on the notion of conceptual structures. 

Let $$𝑎𝑡𝑜 be a set of objects called atoms.  

The set $$𝑐𝑠 of conceptual structures in ⟦$$𝑎𝑡𝑜⟧ is defined as follows: 

 $𝑎𝑡𝑜 ∈ $$𝑐𝑠; 

 ($𝑐𝑠∗) ∈ $$𝑐𝑠; 

 if the elements of $𝑐𝑠+ are pairwise distinct, and $𝑐𝑠 ≠ 𝑢𝑛𝑑, then $𝑐𝑠: ($𝑐𝑠+) ∈ $$𝑠; 

 if the elements of $𝑐𝑠+ are pairwise distinct, and $𝑐𝑠 ≠ 𝑢𝑛𝑑, then ($𝑐𝑠+): : $𝑐𝑠 ∈ $$𝑐𝑠. 

A structure $𝑐𝑠 is atomic if $𝑐𝑠 ∈ $$𝑎𝑡𝑜. 

A structure $𝑐𝑐𝑠 is a compound structure if $𝑐𝑐𝑠 has the form ($𝑐𝑠∗). The operation (… ) is called 

a sequential composition. A structure $𝑐𝑠 is an element in ⟦$𝑐𝑐𝑠⟧ if $𝑐𝑠∗ = $𝑐𝑠∗1 $𝑐𝑠 $𝑐𝑠∗2 for 

some $𝑐𝑠∗1 and $𝑐𝑠∗2. The structure ( ) is called an empty structure. Let $$𝑐𝑐𝑠 be a set of compound 

structures.   
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Let $$𝑡 and $$𝑣 be sets of objects called types and values. An object $𝑚𝑡 is a multi-type if $𝑚𝑡 =

(𝑡+). Let $$𝑚𝑡 be a set of multi-types. An object $𝑚𝑣 is a multi-value if $𝑚𝑣 = (𝑣+). Let $$𝑚𝑣 be 

a set of multi-values. 

A structure $𝑐𝑠 is an absolutely typed structure if $𝑐𝑠 = $𝑣: : $𝑚𝑡. The operation … : : (… ) is called 

an absolute typification operation. Let $$𝑎𝑡𝑐𝑠 be a set of absolutely typed structures.  

A structure $𝑡 is an absolute type in ⟦$𝑎𝑡𝑐𝑠⟧ if $𝑎𝑡𝑐𝑠 = $𝑣: : $𝑚𝑡, and $𝑡 ∈ $𝑚𝑡 for some $𝑣 and 

$𝑚𝑡. A structure $𝑎𝑡𝑐𝑠 has an absolute type $𝑡 if $𝑡 is an absolute type in ⟦$𝑎𝑡𝑐𝑠⟧. A structure $𝑣 is 

a value in ⟦𝑎𝑡𝑐𝑠⟧ if $𝑎𝑡𝑐𝑠 = $𝑣: : $𝑚𝑡 for some $𝑚𝑡. 

A structure $𝑚𝑡 is an absolute multi-type in ⟦$𝑎𝑡𝑐𝑠⟧ if $𝑎𝑡𝑐𝑠 = $𝑣: : $𝑚𝑡1, and $𝑚𝑡 ⊆ $𝑚𝑡1 for 

some $𝑣 and $𝑚𝑡1. A structure $𝑎𝑡𝑐𝑠 has an absolute multi-type $𝑚𝑡 if $𝑚𝑡 is an absolute multi-

type in ⟦$𝑎𝑡𝑐𝑠⟧.  

The absolute typification operation categorizes structures, using absolute types as category names 

and absolute multi-types as category unions. It also models instance constructors for these categories. 

For example, the structure "𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜": : (𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛) specifies the value (instance) of the 

type (category) 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 as the result of application of the instance constructor  ∷ (𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛) to 

the argument "𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜". 

A structure $𝑐𝑠 is a relatively typed structure if $𝑐𝑠 = $𝑣: $𝑚𝑡. The operation … : (… ) is called a 

relative typification operation. Let $$𝑟𝑡𝑐𝑠 be a set of relatively typed structures.  

A structure $𝑡 is a relative type in ⟦$𝑣,  ($𝑐𝑠∗)⟧ if $𝑐𝑠∗ = $𝑐𝑠∗1 $𝑣: $𝑚𝑡 $𝑐𝑠∗2, and $𝑡 ∈ $𝑚𝑡 for 

some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡. A structure $𝑡 is a relative type in ⟦$𝑐𝑐𝑠⟧ if $𝑡 is a relative type in 

⟦$𝑣,  $𝑐𝑐𝑠⟧ for some $𝑣. A structure $𝑣 has a relative type $𝑡 in ⟦$𝑐𝑐𝑠⟧ if $𝑡 is a relative type in 

⟦$𝑣,  $𝑐𝑐𝑠⟧. A structure $𝑐𝑐𝑠 has a relative type $𝑡 if $𝑡 is a relative type in ⟦$𝑐𝑐𝑠⟧. A structure $𝑣 is 

a value in ⟦$𝑟𝑡𝑐𝑠⟧ if $𝑟𝑡𝑐𝑠 = $𝑣: $𝑚𝑡 for some $𝑚𝑡. A structure $𝑣 is a value in ⟦$𝑡, $𝑟𝑡𝑐𝑠⟧ if 

$𝑐𝑠∗ = $𝑐𝑠∗1 $𝑣: $𝑚𝑡 $𝑐𝑠∗2, and $𝑡 ∈ $𝑚𝑡 for some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡. 

A structure $𝑚𝑡 is a relative multi-type in ⟦$𝑣,  ($𝑐𝑠∗)⟧ if $𝑐𝑠∗ = $𝑐𝑠∗1 $𝑣: $𝑚𝑡1 $𝑐𝑠∗2, and 

$𝑚𝑡 ⊆ $𝑚𝑡1 for some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡. A structure $𝑚𝑡 is a relative multi-type in ⟦$𝑐𝑐𝑠⟧ if 

$𝑚𝑡 is a relative multi-type in ⟦$𝑣,  $𝑐𝑐𝑠⟧ for some $𝑣. A structure $𝑣 has a relative multi-type $𝑚𝑡 

in ⟦$𝑐𝑐𝑠⟧ if $𝑚𝑡 is a relative multi-type in ⟦$𝑣,  $𝑐𝑐𝑠⟧. A structure $𝑐𝑐𝑠 has a relative multi-type $𝑚𝑡 

if $𝑚𝑡 is a relative multi-type in ⟦$𝑐𝑐𝑠⟧. A structure $𝑣 is a value in ⟦$𝑚𝑡, $𝑟𝑡𝑐𝑠⟧ if $𝑐𝑠∗ =

$𝑐𝑠∗1 $𝑣: $𝑚𝑡1 $𝑐𝑠∗2, and $𝑚𝑡 ⊆ $𝑚𝑡1 for some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡. 

The relative typification operation categorizes elements of compound structures using relative 

types as category names and relative multi-types as category unions.  
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A structure $𝑐𝑠 is typed if $𝑐𝑠 is relatively typed, or $𝑐𝑠 is absolutely typed. Let $$𝑡𝑐𝑠 be a set of 

typed structures. 

Conceptual transition systems are transition systems that have elements, and in which elements 

and states are conceptual structures. 

Let $$𝑠 be a set of objects called states. A subset of the set $$𝑠 × $$𝑠 is called a transition relation. 

Let $$𝑡𝑟 be a set of transition relations. A pair ($$𝑠, ↪) is a transition system if ↪∈ $$𝑡𝑟. 

An object $𝑐𝑡𝑠 of the form ($$𝑎𝑡𝑜,  $$𝑖𝑠, ↪) is a conceptual transition system if ($$𝑐𝑠⟦$𝑎𝑡𝑜⟧, ↪) 

is a transition system, and $$𝑖𝑠 ⊆ $$𝑐𝑠. The elements of $$𝑎𝑡𝑜 and $$𝑖𝑠 are called atoms and initial 

states in ⟦$𝑐𝑡𝑠⟧. The relation ↪ is called a transition relation in ⟦$𝑐𝑡𝑠⟧. Let $$𝑐𝑡𝑠 be a set of CTSs. 

The sets $$𝑠 and $$𝑒 of states and elements in ⟦$$𝑐𝑡𝑠⟧ are defined as follows: $$𝑠 = $$𝑒 = $$𝑐𝑠.  

Let [.  $𝑚𝑡], [.  $𝑚𝑡 ≔ $𝑣] and [.  $𝑚𝑡 ≔] denote [$𝑠 .  $𝑚𝑡], [$𝑠 .  $𝑚𝑡 ≔ $𝑣] and [$𝑠 .  $𝑚𝑡 ≔] 

for the current state $𝑠. 

4. The CTSL language 

Let $$𝑠𝑎 be a set of syntactic constructs called special atoms. 

The CTSL language is a basic language of CTSs. It only defines the syntax of conceptual structures 

and does not concretize the set $$𝑠𝑎 and the transition relation ↪. The extensions of CTSL for the 

special kinds of CTSs use the CTSL syntax and concretize $$𝑠a and ↪.  

The set $$𝑎𝑡𝑜 of atoms in CTSL is defined as follows: 

 if $𝑜 is a sequence of Unicode symbols except for the whitespace symbols and the symbols ", 

(, ), {, }, ;, ,, and :, then $𝑜 ∈ $$𝑎𝑡𝑜; 

 $$𝑠𝑎 ⊆ $$𝑎𝑡𝑜; 

 if $𝑜 has the form "$𝑜1", $𝑜1 is a sequence of Unicode symbols, each occurrence of the symbol 

" in $𝑜1 is preceded by the symbol \, and each occurrence of the symbol \ in $𝑜1 is doubled, 

then $𝑜 ∈ $$𝑎𝑡𝑜. In this case, the atom $𝑜 is called a string.  

The set $$𝑐𝑠 of conceptual structures in CTSL is defined as follows: 

 $𝑎𝑡𝑜 ∈ $$𝑐𝑠; 

 ($𝑐𝑠∗) ∈ $$𝑐𝑠; 

 if the elements of $𝑐𝑠+ are pairwise distinct, and $cs ≠ 𝑢𝑛𝑑, then $𝑐𝑠: ($𝑐𝑠+) ∈ $$𝑠; 

 if the elements of $𝑐𝑠+ are pairwise distinct, and $cs ≠ 𝑢𝑛𝑑, then ($𝑐𝑠+): : $𝑐𝑠 ∈ $$𝑐𝑠. 

The whitespace symbols, comma (,) and the semicolon (;) are interchangeable in compound 

structures in CTSL. For example, ($𝑐𝑠1,  $𝑐𝑠2), ($𝑐𝑠1; $𝑐𝑠2) and ($𝑐𝑠1 $𝑐𝑠2) represent the same 

conceptual structure. 
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The bracket pairs (, ) and {, } are interchangeable in compound structures in CTSL. For example, 

($𝑐𝑠∗) and {$𝑐𝑠∗} represent the same compound conceptual structure. 

5. The basic operations on conceptual structures 

The conceptual structure access operation [$𝑐𝑠 .  $𝑚𝑡] makes selection of elements of a compound 

structure in accordance with their relative types. It is defined as follows: 

 if $𝑐𝑠 = $𝑣: $𝑚𝑡1, and $𝑚𝑡 ⊆ $𝑚𝑡1, then [$𝑐𝑠 .  $𝑚𝑡] = $𝑣; 

 if $𝑐𝑠 ∈ $$𝑐𝑐𝑠, and there exists only one element $𝑐𝑠1 of $𝑐𝑠 such that $𝑐𝑠1 = $𝑣: $𝑚𝑡1, and 

$𝑚𝑡 ⊆ $𝑚𝑡1, then [$𝑐𝑠 .  $𝑚𝑡] = $𝑣; 

 if $𝑐𝑠 ∈ $$𝑐𝑐𝑠, $𝑛 > 1, $𝑐𝑠1, …, $𝑐𝑠$𝑛 are (ordered from left to right) elements of $𝑐𝑠 such 

that $𝑐𝑠$𝑛1 = $𝑣$𝑛1: $𝑚𝑡$𝑛1, and $𝑚𝑡 ⊆ $𝑚𝑡$𝑛1 for each 1 ≤ $𝑛1 ≤ $𝑛, then 

[$𝑐𝑠 .  $𝑚𝑡] = ($𝑣1 … $𝑣$𝑛): : (𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒); 

 otherwise, [$𝑐𝑠 .  $𝑚𝑡] = 𝑢𝑛𝑑. 

An element $𝑣 is a value in ⟦$𝑚𝑡,  $𝑐𝑠⟧ if $𝑣 = [$𝑐𝑠 .  $𝑚𝑡]. The value of the form 

$𝑚𝑣: : (𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒) is called a multi-value. Let [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑐𝑠] denote {$𝑚𝑡 | [$𝑐𝑠 .  $𝑚𝑡] ≠ 𝑢𝑛𝑑}. 

A structure $𝑡 is an (single-valued) attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 .  ($𝑡)] does not have the absolute 

type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. A structure $𝑡 is a multi-valued attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 .  ($𝑡)] has the absolute 

type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. Let $$𝑎𝑡𝑡 and $$𝑚𝑣𝑎𝑡𝑡 be sets of attributes and multi-valued attributes. 

A structure $𝑐𝑠 is an (single-valued) attribute structure if $𝑡 is an attribute in ⟦$𝑐𝑠⟧ for each $𝑡 ∈

$$𝑐𝑠. A structure $𝑐𝑐𝑠 is a multi-valued attribute structure if $𝑡 is a multi-valued attribute in ⟦$𝑐𝑐𝑠⟧ 

for some $𝑡 ∈ $$𝑐𝑠. Let $$𝑎𝑠 and $$𝑚𝑣𝑎𝑠 be sets of attribute structures and multi-valued attribute 

structures. 

For example, the conceptual structure  

(𝑥: {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒} 𝑖𝑛𝑡: {(𝑡𝑦𝑝𝑒 𝑥)} 3: {(𝑣𝑎𝑙𝑢𝑒 𝑥)} 𝑦: {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒} 𝑏𝑜𝑜𝑙: {(𝑡𝑦𝑝𝑒 𝑦)} 𝑡𝑟𝑢𝑒: {(𝑣𝑎𝑙𝑢𝑒 𝑦)})  

defines the variables 𝑥 and 𝑦 by the multi-attribute 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, the types 𝑖𝑛𝑡 and 𝑏𝑜𝑜𝑙 of these variables 

by the parametric attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎), where the values of the parameter $𝑣𝑎 are variables, and the 

values 3 and 𝑡𝑟𝑢𝑒 of these variables by the parametric attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎). 

A structure $𝑚𝑡 is a (single-valued) multi-attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 .  $𝑚𝑡] does not have the 

absolute type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. A structure $𝑚𝑡 is a multi-valued multi-attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 .  $𝑚𝑡] 

has the absolute type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. Let $$𝑚𝑎𝑡𝑡 and $$𝑚𝑣𝑚𝑎𝑡𝑡 be sets of multi-attributes and multi-

valued multi-attributes. 

A structure $𝑐𝑠 is an (single-valued) multi-attribute structure if $𝑚𝑡 is a multi-attribute in ⟦$𝑐𝑠⟧ 

for each $𝑚𝑡 ∈ {(𝑡+)|𝑡+ ∈ $$𝑐𝑠+}. A structure $𝑐𝑐𝑠 is a multi-valued multi-attribute structure if 
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$𝑚𝑡 is a multi-valued multi-attribute in ⟦$𝑐𝑐𝑠⟧ for some $𝑚𝑡 ∈ {(𝑡+)|𝑡+ ∈ $$𝑐𝑠+}. Let $$𝑚𝑎𝑠 and 

$$𝑚𝑣𝑚𝑎𝑠 be sets of mult-attribute structures and multi-valued multi-attribute structures. 

The conceptual structure update operation [$𝑐𝑠 .  $𝑚𝑡 ≔ $𝑣] replaces all values in ⟦$𝑚𝑡,  $𝑐𝑠⟧ in 

$𝑐𝑠 by $𝑣 from left to right and deletes these values in case when $𝑣 = 𝑢𝑛𝑑. It is defined as follows 

(the first proper rule is applied):  

 if $mt is not a relative multi-type in ⟦($𝑐𝑠∗)⟧, and $𝑣 ≠ 𝑢𝑛𝑑, then  

[($𝑐𝑠∗) .  $𝑚𝑡 ≔ $𝑣] = ($𝑐𝑠∗ $𝑣: $𝑚𝑡); 

 if $mt is not a relative multi-type in ⟦$𝑐𝑠⟧, and $𝑣 ≠ 𝑢𝑛𝑑, then  

[$𝑐𝑠 .  $𝑚𝑡 ≔ $𝑣] = ($𝑐𝑠 $𝑣: $𝑚𝑡); 

 if $𝑚𝑡 ⊑ $𝑚𝑡1, and $𝑣 ≠ 𝑢𝑛𝑑,  then [$𝑣1: $𝑚𝑡1 .  $𝑚𝑡 ≔ $𝑣] = $𝑣: $𝑚𝑡1; 

 if $𝑚𝑡 ⊑ $𝑚𝑡1, then [$𝑣1: $𝑚𝑡1 .  $𝑚𝑡 ≔ 𝑢𝑛𝑑] = 𝑢𝑛𝑑; 

 [($𝑐𝑠∗)  .  $𝑚𝑡 ≔ $𝑣] = ([$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣]); 

 [$𝑐𝑠 .  $𝑚𝑡 ≔ $𝑣] = $𝑐𝑠. 

The conceptual structure update operation [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] is defined as follows (the 

first proper rule is applied):  

 if $𝑚𝑡 ⊑ $𝑚𝑡1, and $𝑣 ≠ 𝑢𝑛𝑑,  then  

[$𝑣1: $𝑚𝑡1 $𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] = $𝑣: $𝑚𝑡1 [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣]; 

 if $𝑚𝑡 ⊑ $𝑚𝑡1, then  

[$𝑣1: $𝑚𝑡1 $𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ 𝑢𝑛𝑑] = [$𝑐𝑠∗ .  : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ 𝑢𝑛𝑑]; 

 [$𝑐𝑠 $𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] = $𝑐𝑠 [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣]; 

 [[𝑒𝑠] . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] = [𝑒𝑠].  

The conceptual structure update operation [$𝑐𝑠 .  $𝑚𝑡1 ≔ $𝑣1 …  $𝑚𝑡$𝑛 ≔ $𝑣$𝑛] is defined as 

follows:  

 [$𝑐𝑠 .  $𝑚𝑡 ≔ $𝑣 $𝑠𝑒] = [[$𝑐𝑠 . $𝑚𝑡 ≔ $𝑣] $𝑠𝑒]; 

 [$𝑐𝑠 . [𝑒𝑠]] = $𝑐𝑠. 

The conceptual structure update operation [$𝑐𝑠 .  $𝑚𝑡 ≔] is a shortcut for [$𝑐𝑠 .  $𝑚𝑡 ≔ 𝑢𝑛𝑑]. 

6. The properties of conceptual transition systems 

An element $𝑡𝑟𝑎 of the form ($𝑠1,  $𝑠2) is called a transition. The states $𝑠1 and $𝑠2 are called 

input and output states in ⟦𝑡𝑟𝑎⟧. Let $$𝑡𝑟𝑎 be a set of transitions.  

A state $𝑠1 is final if there is no $𝑠2 such that $𝑠1 ↪ $𝑠2. Let $$𝑓𝑠 be a set of final states in 

⟦$𝑐𝑡𝑠⟧. A system $𝑐𝑡𝑠 stops in ⟦$𝑠⟧ if $𝑠 is final. 
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A state $𝑠 is reachable if there exist $𝑛 > 0, $𝑠1 , …, $𝑠$𝑛 such that $𝑠1 ∈ $𝑖𝑠,  $𝑠$𝑛1 ↪

$𝑠[$𝑛1 + 1] for each 1 ≤ $𝑛1 < $𝑛, and $𝑠 = $𝑠$𝑛. Let $$𝑟𝑠 be a set of reachable states in ⟦$𝑐𝑡𝑠⟧. 

An element $t is an attribute in ⟦$𝑐𝑡𝑠⟧ if $t is an attribute in ⟦$𝑠⟧ for each $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧. An 

element $t is a multi-valued attribute in ⟦$𝑐𝑡𝑠⟧ if there exists $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧ such that $t is a multi-

valued attribute in ⟦$𝑠⟧. An element $mt is a multi-attribute in ⟦$𝑐𝑡𝑠⟧ if $mt is a multi-attribute in 

⟦$𝑠⟧ for each $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧. An element $mt is a multi-valued multi-attribute in ⟦$𝑐𝑡𝑠⟧ if there 

exists $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧ such that $mt is a multi-valued multi-attribute in ⟦$𝑠⟧.   

A system $𝑐𝑡𝑠 is a CTS with return values if 𝑣𝑎𝑙𝑢𝑒 is an attribute in ⟦$𝑐𝑡𝑠⟧. An element $𝑣 is a 

value in ⟦$𝑠⟧ if $𝑣 = [$𝑠 .  {𝑣𝑎𝑙𝑢𝑒}]. An element $𝑣 is a value in ⟦𝑡𝑟𝑎⟧ if [$𝑡𝑟𝑎 . .  1] ↪ [$𝑡𝑟𝑎 . .  2], 

and $𝑣 is a value in ⟦[$𝑡𝑟𝑎 . .  2]⟧. A transition $𝑡𝑟𝑎 returns a value $𝑣 if $𝑣 is a value in ⟦$𝑡𝑟𝑎⟧. An 

element $𝑣 is undefined if $𝑣 = 𝑢𝑛𝑑. The set $$𝑣 of (possible) values is defined as follows: $$𝑣 =

$$𝑒. 

A system $𝑐𝑡𝑠 with return values can return exceptions. A value $𝑣 is an exception (an exceptional 

value) if $𝑣 has the absolute type 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛. Thus, exceptions are specified by the absolute type 

𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛. Let 𝑒𝑥𝑐 be a shortcut for 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛. Let $$𝑒𝑥 be a set of exceptions. An element $𝑡 is 

called a type in ⟦$𝑒𝑥⟧ if $𝑡 = [$𝑣 .  {𝑡𝑦𝑝𝑒}], where $𝑣 is a value in ⟦$𝑒𝑥⟧.  

A value $𝑣 is abnormal if $𝑣 is undefined, or $𝑣 is an exception. Let $$𝑎𝑣 be a set of abnormal 

values. A value $𝑣 is normal if $𝑣 ∉ $$𝑎𝑣. Let $$𝑛𝑣 be a set of normal values. A transition $𝑡𝑟𝑎 

returns (generates) an exception $𝑒𝑥 if $𝑒𝑥 is a value in ⟦$𝑡𝑟𝑎⟧. A transition $𝑡𝑟𝑎 is normally 

executed if $𝑡𝑟𝑎 does not return exceptions. 

A system $𝑐𝑡𝑠 is a CTS with programs if 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 is an attribute in ⟦$𝑐𝑡𝑠⟧, and the value of this 

attribute is a compound structure. A compound structure $𝑝 is a program in ⟦$𝑠⟧ if 

$𝑝 =  [$𝑠 .  {𝑝𝑟𝑜𝑔𝑟𝑎𝑚}]. Let $$𝑝 be a set of programs. A program in ⟦$𝑠⟧ is empty if 

[$𝑠 .  {𝑝𝑟𝑜𝑔𝑟𝑎𝑚}] = (). A program in ⟦$𝑠⟧ initiates transitions from $𝑠.   

The elements that initiate transitions are called executable elements. Let $$𝑒𝑒 be a set of 

executable elements. A program $p is an executable element, and the elements of ⟦$𝑝⟧ are executable 

elements. 

A system $𝑐𝑡𝑠 is a CTS with direct stop if 𝑠𝑡𝑜𝑝 is an attribute in ⟦$𝑐𝑡𝑠⟧, and $𝑠 is final for each 

$𝑠 such that [$𝑠 .  {𝑠𝑡𝑜𝑝}] ≠  𝑢𝑛𝑑. A state $s is a stop state if [$𝑠 .  {𝑠𝑡𝑜𝑝}] ≠  𝑢𝑛𝑑. The value of 

the attribute 𝑠𝑡𝑜𝑝 specifies why the system $𝑐𝑡𝑠 stopped.   

An attribute $𝑏𝑖 in ⟦$𝑠⟧ is a backtracking invariant in ⟦$𝑠⟧ if 

[$𝑠 .  {((𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) $𝑏𝑖)}] ≠ 𝑢𝑛𝑑. An attribute $𝑏𝑖 is a backtracking invariant in 



142    Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models 

⟦$𝑐𝑡𝑠⟧ if $𝑏𝑖 is a backtracking invariant in ⟦$𝑠⟧ for some $𝑠 ∈ $$𝑟𝑠⟦↪ ⟦$𝑐𝑡𝑠⟧⟧. Backtracking 

invariants preserves their values after backtracking. Let $$𝑏𝑖 be a set of backtracking invariants. 

Let [(𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠) $𝑠1 $𝑠2] denote the state $𝑠 such that 

[$𝑠 .  {$𝑎𝑡𝑡}] = [$𝑠1 .  {$𝑎𝑡𝑡}] for each $𝑎𝑡𝑡 ∈ $$𝑏𝑖⟦$𝑠2⟧, and [$𝑠 .  {$𝑎𝑡𝑡}] = [$𝑠2 .  {$𝑎𝑡𝑡}] for 

each $𝑎𝑡𝑡 ∉ $$𝑏𝑖⟦$𝑠2⟧.    

Let $𝑒∗ # $𝑣 # $𝑠 and $𝑒∗ # $𝑠 denote [$𝑠 .  {𝑝𝑟𝑜𝑔𝑟𝑎𝑚} : = ($𝑒∗),  {𝑣𝑎𝑙𝑢𝑒} : = $𝑣] and 

[$𝑠 .  {𝑝𝑟𝑜𝑔𝑟𝑎𝑚} : = ($𝑒∗)]. 

A system $𝑐𝑡𝑠 is a CTS with backtracking in ⟦$$𝑏𝑖⟧ if $𝑐𝑡𝑠 is a CTS with return values with 

programs, ((𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) $𝑏𝑖) is a parametric attribute in ⟦$𝑐𝑡𝑠⟧, $𝑏𝑖 is a backtracking 

invariant in ⟦$𝑐𝑡𝑠⟧ for each $𝑏𝑖 ∈ $$𝑏𝑖, and ↪ ⟦$𝑐𝑡𝑠⟧ satisfies the following properties: 

 if $𝑣⟦$𝑠⟧ ≠ 𝑢𝑛𝑑, then (𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 $𝑠1 $𝑒∗1) $𝑒∗ # $𝑠 ↪ $𝑒∗ # $𝑠; 

 if $𝑣⟦$𝑠⟧ = 𝑢𝑛𝑑, then  

        (𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 $𝑠1 $𝑒∗1) $𝑒∗ # $𝑠 ↪

          $𝑒∗1 $𝑒∗ # [(𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠) $𝑠1 $𝑠]. 

The element $𝑒 of the form (𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 $𝑠 $𝑒∗) is called a backtracking point. The objects $𝑠 

and $𝑒∗ are called a state and a program prefix in ⟦$𝑒⟧. 

7. Examples of conceptual models of programming languages 

Let $$𝑙 be a set of programming languages. Let [𝑎𝑚 $𝑙] denotes an abstract machine executing 

the constructs of $𝑙. A tuple ($$𝑡,  $$𝑣,  $$𝑒𝑥, $$𝑠,  $$𝑐, $$𝑎𝑥) is a conceptual model of $𝑙 in CTSL 

if $$𝑡⟦$𝑙⟧ is a set of elements in CTSL representing the types of $𝑙, $$𝑣⟦$𝑙⟧ is a set of elements in 

CTSL representing the values in [𝑎𝑚 $𝑙] (in particular, the values of the types of $𝑙), $$ex⟦$𝑙⟧ is a 

set of exceptions in CTSL representing the exceptions in [𝑎𝑚 $𝑙], $$ex⟦$𝑙⟧ ⊑ $$𝑣⟦$𝑙⟧, $$𝑠⟦$𝑙⟧ is a 

set of states in CTSL representing the states of [𝑎𝑚 $𝑙], $$𝑐⟦$𝑙⟧ is a set of executable elements in 

CTSL representing the executable constructs of [𝑎𝑚 $𝑙] (in particular, the elements of programs in 

$𝑙), and $$𝑎𝑥 is a set of axioms representing the constraints for the conceptual model of $𝑙 (the other 

elements of the tuple).  

Let [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] denote the set of values in ⟦$𝑡⟧. The set [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] is called the content in 

⟦$𝑡⟧. The fact that $$𝑡 and $𝑡 depend on $𝑠 is denoted by $$𝑡⟦$𝑠⟧ and $𝑡⟦$𝑠⟧. 

Let Axiom: $𝑎𝑥 denote that $𝑎𝑥 is an axiom of the conceptual model of $𝑙. 

The family of model programming languages (MPLs) is described and their conceptual models 

are defined in this section. 
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7.1. MPL1: types, typed variables and basic statement 

The MPL1 language is an extension of CTSL that adds types, typed variables, the variable access 

operation, and the basic statements such as variable declarations, variable assignments, if statements, 

while statements and block statements. 

7.1.1. Types, values, states 

For MPL1, $$𝑡⟦MPL1⟧ = {𝑖𝑛𝑡,  𝑛𝑎𝑡}, $$𝑣⟦MPL1⟧ = $$𝑖 ∪ $$𝑛, and $$𝑒𝑥⟦MPL1⟧ = ∅,  where 

[𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛𝑡] = $$𝑖, and [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑛𝑎𝑡] = $$𝑛. 

 An element $𝑒 is a name if $𝑒 is normal. Let $$𝑛𝑎 be a set of names. 

 The attribute (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎) specifies variables in MPL1. A name $𝑛𝑎 is a variable in ⟦$𝑠⟧ if 

[$𝑠 .  {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑣𝑎 be a set of variables. 

 The attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎) specifies the type of the variable $𝑣𝑎. A type $𝑡 is a type in ⟦$𝑣𝑎,  $𝑠⟧ 

if [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎)}] = $𝑡. 

Axiom: If [$𝑠 .  {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑣𝑎)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎)}] ∈ $$𝑡⟦$𝑠⟧.  

The attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎) specifies the value of the variable $𝑣𝑎. A value $𝑣 is a value in 

⟦$𝑣𝑎,  $𝑠⟧ if [$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎)}] = $𝑣. 

Axiom: If [$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎)}] = $𝑡, and 

[$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡 ∈ $$𝑡⟦$𝑠⟧. 

7.1.2. Constructs 

The MPL1 program  is represented by the element (𝑝𝑟𝑜𝑔𝑟𝑎𝑚 $𝑛𝑎 $𝑐∗). It specifies a program 

with the name $𝑛𝑎 and the body $𝑐∗.  

The variable declaration is represented by the element (𝑣𝑎𝑟 $𝑣𝑎 $𝑡). It declares the variable $𝑣𝑎 

of the type $𝑡. 

Axiom: Variable declarations are elements of the program body. 

The variable access operation is represented by $𝑣𝑎. It returns the value of the variable $𝑣𝑎. 

The variable assignment is represented by the element ($𝑣𝑎 \≔  $𝑐). If $𝑣 is a value of $𝑐, then 

it assigns $𝑣 to the variable $𝑣𝑎. 

The block statement is represented by the element (𝑏𝑙𝑜𝑐𝑘 $𝑐∗). It specifies the block statement 

with the body $𝑐∗. 

The if statement is represented by the element (\𝑖𝑓 $𝑐 𝑡h𝑒𝑛 $𝑐∗1 𝑒𝑙𝑠𝑒 $𝑐∗2). It specifies the if 

statement with the condition $𝑐, the then-branch $𝑐∗1 and the else-branch $𝑐∗2.  The element 

(\𝑖𝑓 $𝑐 𝑡h𝑒𝑛 $𝑐∗1) is a shortcut for (\𝑖𝑓 $𝑐 𝑡h𝑒𝑛 $𝑐∗1 𝑒𝑙𝑠𝑒).  
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The while statement is represented by the element (\𝑤h𝑖𝑙𝑒 $𝑐 𝑑𝑜 $𝑐∗). It specifies the while 

statement with the condition $𝑐 and the body $𝑐∗. 

7.2. MPL2: variable scopes 

The MPL2 language is an extension of MPL1 that adds the variable scopes feature.  

The relative scope of the variable $𝑣𝑎 occuring in the element $𝑐 is the number of blocks 

surrounding this occurrence of $𝑣𝑎 in $𝑐. The value and type of $𝑣𝑎 depend on its scope. The variable 

$𝑣𝑎 can be global (with the scope 0) and local. The following example illustrates variable scopes: 

(𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑐𝑜𝑝𝑒𝑠 // 𝑥 = 𝑢𝑛𝑑,  𝑦 = 𝑢𝑛𝑑,  𝑠𝑐𝑜𝑝𝑒 =  0  

  (𝑣𝑎𝑟 𝑥 𝑖𝑛𝑡) // 𝑥 =  𝑢𝑛𝑑,  𝑦 =  𝑢𝑛𝑑,  𝑠𝑐𝑜𝑝𝑒 =  0  

  (𝑥 : =  0) // 𝑥 =  0,  𝑦 =  𝑢𝑛𝑑,  𝑠𝑐𝑜𝑝𝑒 =  0  

  (𝑣𝑎𝑟 𝑦 𝑏𝑜𝑜𝑙) // 𝑥 =  0,  𝑦 =  𝑢𝑛𝑑,  𝑠𝑐𝑜𝑝𝑒 =  0  

  (𝑦 : =  𝑡𝑟𝑢𝑒) // 𝑥 =  0,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  0  

  (𝑏𝑙𝑜𝑐𝑘 // 𝑥 =  0,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  1  

     (𝑣𝑎𝑟 𝑥 𝑏𝑜𝑜𝑙) // 𝑥 =  𝑢𝑛𝑑,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  1  

     (𝑥 : =  𝑓𝑎𝑙𝑠𝑒) // 𝑥 =  𝑓𝑎𝑙𝑠𝑒,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  1  

     (𝑏𝑙𝑜𝑐𝑘 // 𝑥 =  𝑓𝑎𝑙𝑠𝑒,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  2  

       (𝑣𝑎𝑟 𝑥 𝑖𝑛𝑡) // 𝑥 =  𝑢𝑛𝑑,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  2  

       (𝑥 : =  2) // 𝑥 =  2,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  2  

     ) // 𝑥 =  𝑓𝑎𝑙𝑠𝑒,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  1  

     (𝑣𝑎𝑟 𝑦 𝑖𝑛𝑡) // 𝑥 =  𝑓𝑎𝑙𝑠𝑒,  𝑦 =  𝑢𝑛𝑑,  𝑠𝑐𝑜𝑝𝑒 =  1  

     (𝑦 : =  1) // 𝑥 =  𝑓𝑎𝑙𝑠𝑒,  𝑦 =  1,  𝑠𝑐𝑜𝑝𝑒 =  1  

  ) // 𝑥 =  0,  𝑦 =  𝑡𝑟𝑢𝑒,  𝑠𝑐𝑜𝑝𝑒 =  0 

).  

7.2.1. Types, values, states 

For MPL2, $$𝑡⟦MPL2⟧ = $$𝑡⟦MPL1⟧, $$𝑣⟦MPL2⟧ = $$𝑣⟦MPL1⟧, and $$𝑒𝑥⟦MPL2⟧ = ∅. 

Let $$𝑠𝑐 be a set of (relative) variable scopes. 

The attribute (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐) specifies variables in ⟦$𝑠𝑐⟧. A name $𝑛𝑎 is a variable in 

⟦$𝑠,  $𝑠𝑐⟧ if [$𝑠 .  {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐)}] ≠ 𝑢𝑛𝑑.  

A variable $𝑣𝑎⟦$𝑠,  $𝑠𝑐⟧ is global if $𝑠𝑐 = 0. A variable $𝑣𝑎⟦$𝑠,  $𝑠𝑐⟧ is local if $𝑠𝑐 > 0. 

The attribute (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒) specifies the scope of the current block. A scope $𝑠𝑐 is a current 

scope in ⟦$𝑠⟧ if [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}] = $𝑠𝑐. A name $𝑛𝑎 is a variable in ⟦$𝑠⟧ if $𝑛𝑎 is a variable 

in ⟦$𝑠, $𝑠𝑐⟧ for some 0 ≤ $𝑠𝑐 ≤ [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. A scope $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠⟧ if 
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$𝑣𝑎 is a variable in ⟦$𝑠, $𝑠𝑐⟧, 0 ≤ $𝑠𝑐 ≤ [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}], and $𝑣𝑎 is not a variable in 

⟦$𝑠, $𝑠𝑐1⟧ for each $𝑠𝑐 < $𝑠𝑐1 ≤ [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. 

The attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐) specifies the type of the variable $va in ⟦$𝑠𝑐⟧. A type $𝑡 is a type in 

⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧ if [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑡. A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠⟧ if $𝑡 is a type in 

⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠⟧.  

Axiom: If [$𝑠 .  {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑣𝑎 $𝑠𝑐)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐)}] ∈ $$𝑡⟦$𝑠⟧.  

The attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐) specifies the value of the variable $𝑣𝑎 in ⟦$𝑠𝑐⟧. A value $𝑣 is a 

value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧ if [$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑣. A value $𝑣 is a value in ⟦$𝑣𝑎, $𝑠⟧ if $𝑣 is 

a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠⟧.  

Axiom: If [$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑡, and 

[$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡 ∈ $$𝑡⟦$𝑠⟧.  

 7.2.2. Constructs 

For MPL2, $$𝑐⟦MPL2⟧ = $$𝑐⟦MPL1⟧. 

Axiom: Variable declarations are elements of the program body or of block bodies. 

7.3. MPL3: functions 

The MPL3 language is an extension of MPL2 that adds the functions feature: declarations and 

calls of functions, and the return statement.  

Axiom: Function overloading is prohibited. 

7.3.1. Types, values, states 

The exception (𝑟𝑒𝑡𝑢𝑟𝑛: {𝑡𝑦𝑝𝑒},  𝑣: {𝑣𝑎𝑙𝑢𝑒}): : {𝑒𝑥𝑐} specifies the execution of the return 

statement with the return value 𝑣. Let $$𝑒𝑥1 be a set of such exceptions. 

For MPL2, $$𝑡⟦MPL3⟧ = $$𝑡⟦MPL2⟧, $$𝑣⟦MPL3⟧ = $$𝑣⟦MPL2⟧ ∪ $$𝑒𝑥⟦MPL3⟧, and 

$$𝑒𝑥⟦𝑀𝑃𝐿3⟧ = $$𝑒𝑥1. 

The attribute (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 $𝑛𝑎) specifies functions. A name $𝑛𝑎 is a function in ⟦$𝑠⟧ if 

[$𝑠 .  {(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑓 be a set of functions.  

The attribute (𝑎𝑟𝑖𝑡𝑦 $𝑓) specifies the arity of the function $𝑓. A number $𝑛 is an arity in 

⟦$𝑓, $𝑠⟧ if [$𝑠 .  {(𝑎𝑟𝑖𝑡𝑦 $𝑓)}] = $𝑛.  

The attribute (𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑓 $𝑛) specifies the $𝑛-th argument of the function $𝑓. A name $𝑛𝑎 is 

an argument in ⟦$𝑓, $𝑛⟧ if [$𝑠 .  {(𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑓 $𝑛)}] = $𝑛𝑎, and 1 ≤ $𝑛 ≤ [$𝑠 .  {(𝑎𝑟𝑖𝑡𝑦 $𝑓)}]. 

Let $$𝑎 be a set of arguments. 
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The attribute ((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑓 $𝑛) specifies the type of the $𝑛-th argument of the function 

$𝑓. A type $𝑡 is a type in ⟦$𝑓, $𝑛⟧ if [$𝑠 .  {((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒)} $𝑓 $𝑛)] ≠ 𝑢𝑛𝑑, and 1 ≤ $𝑛 ≤

[$𝑠 .  {(𝑎𝑟𝑖𝑡𝑦 $𝑓)}]. 

The attribute ((𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒) $𝑓) specifies the return type of the function $𝑓. A type $𝑡 is a return 

type in ⟦$𝑓⟧ if [$𝑠 .  {((𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒)$𝑓)}] = $𝑡. 

The attribute (𝑏𝑜𝑑𝑦 $𝑓) specifies the body of the function $𝑓. A sequence $𝑐∗ is a body in ⟦$𝑓⟧ if 

[$𝑠 .  {(𝑏𝑜𝑑𝑦 $𝑓)}] = ($𝑐∗). 

A call level is a number of embedded function calls. Let $$𝑐𝑙 be a set of call levels. The attribute 

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙) specifies the current call level. A level $𝑐𝑙 is a current call level in ⟦$𝑠⟧ if $𝑐𝑙 =

[$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙)}]. 

The (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒) specifies the return type in the current function call. A type $𝑡 is a 

current return type in ⟦$𝑠⟧ if [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒)}] = $𝑡. 

The attribute (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙) specifies variables in ⟦$𝑠𝑐, $𝑐𝑙⟧. A name $𝑛𝑎 is a variable 

in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 .  {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, and $𝑠𝑐 = 0 implies $𝑐𝑙 = 0. 

A variable $𝑣𝑎⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ is global if $𝑠𝑐 = 0, and $𝑐𝑙 = 0. A variable $𝑣𝑎⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ is 

local if $𝑠𝑐 > 0, and $𝑐𝑙 > 0. 

A name $𝑛𝑎 is a variable in ⟦$𝑠, $𝑐𝑙⟧ if $𝑛𝑎 is a variable in ⟦$𝑠, $𝑠𝑐,  $𝑐𝑙⟧ for some 0 ≤ $𝑠𝑐 ≤

[$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. A scope $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠,  $𝑐𝑙⟧ if $𝑣𝑎 is a variable in 

⟦$𝑠, $𝑠𝑐,  $𝑐𝑙⟧, 0 ≤ $𝑠𝑐 ≤ [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}], and $𝑣𝑎 is not a variable in ⟦$𝑠,  $𝑠𝑐1, $𝑐𝑙⟧ for 

each $𝑠𝑐 < $𝑠𝑐1 ≤ [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. 

The attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙) specifies the type of the variable $𝑣𝑎 in ⟦$𝑠𝑐,  $𝑐𝑙⟧. A type $𝑡 is 

a type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] = $𝑡.  

Axiom: If [$𝑠 .  {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ∈ $$𝑡⟦$𝑠⟧.  

A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧ if $𝑡 is a type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧, and $𝑠𝑐 is a scope in 

⟦$𝑣𝑎, $𝑐𝑙⟧ for some 0 ≤ $𝑠𝑐 ≤ [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧ if $𝑡 

is a type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧. 

The attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙) specifies the value of the variable $𝑣𝑎 in ⟦$𝑠𝑐,  $𝑐𝑙⟧. A value 

$𝑣 is a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧ if [$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑣. A value $𝑣 is a value in 

⟦$𝑣𝑎, $𝑠,  $𝑐𝑙⟧ if $𝑣 is a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐,  $𝑐𝑙⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠,  $𝑐𝑙⟧.  

Axiom: If [$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] = $𝑡, and 

[$𝑠 .  {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡 ∈ $$𝑡⟦$𝑠⟧.  
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7.3.2. Constructs 

An object $𝑜 is a typed name if $𝑜 = $𝑛𝑎 $𝑡. Let $$𝑡𝑛𝑎 be a set of typed names. 

The function declaration is represented by the element (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 $𝑓 ($𝑡𝑛𝑎1 …  $𝑡𝑛𝑎$𝑛) $𝑡 $𝑐∗). 

It specifies the declaration of the function $𝑓, the arguments $𝑛𝑎⟦$𝑡𝑛𝑎1⟧, ..., $𝑛𝑎⟦$𝑡𝑛𝑎$𝑛⟧ of the 

types $𝑡⟦$𝑡𝑛𝑎1⟧, ..., $𝑡⟦$𝑡𝑛𝑎$𝑛⟧, the return type $𝑡, and the body $𝑐∗. 

Axiom: Function declarations are elements of the program body. 

The return statement is represented by the element (𝑟𝑒𝑡𝑢𝑟𝑛 $𝑐). It specifies the return statement 

with the return element $𝑐. If $𝑣 is a value of $𝑐, then it returns $𝑣. 

The function call is represented by the element (𝑐𝑎𝑙𝑙 $𝑓 $𝑐∗). It specifies the call of the function 

$𝑓 with the arguments $𝑐∗. 

7.4. MPL4: procedures 

The MPL4 language is an extension of MPL3 that adds the procedures feature: declarations and 

calls of procedures, and the exit statement.  

Axiom: Procedure overloading is prohibited.  

Axiom: The sets of function names and procedure names are disjoint. 

7.4.1. Types, values, states 

The exception (𝑒𝑥𝑖𝑡: {𝑡𝑦𝑝𝑒}): : {𝑒𝑥𝑐} specifies the execution of the exit statement. Let $$𝑒𝑥1 be 

a set of such exceptions. 

For MPL4, $$𝑡⟦MPL4⟧ = $$𝑡⟦MPL3⟧, $$𝑣⟦MPL4⟧ = $$𝑣⟦MPL3⟧ ∪ $$𝑒𝑥⟦MPL4⟧, and 

$$𝑒𝑥⟦𝑀𝑃𝐿4⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿3⟧ ∪ $$𝑒𝑥1. 

The attribute (𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 $𝑛𝑎) specifies procedures. A name $𝑛𝑎 is a procedure in ⟦$𝑠⟧ if 

[$𝑠 .  {(𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑝𝑟 be a set of procedures.  

The attribute (𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟) specifies the arity of the procedure $𝑝𝑟. A number $𝑛 is an arity in 

⟦$𝑝𝑟, $𝑠⟧ if [$𝑠 .  {(𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟)}] = $𝑛.  

The attribute (𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑝𝑟 $𝑛) specifies the $𝑛-th argument of the procedure $𝑝𝑟. A name 

$𝑛𝑎 is an argument in ⟦$𝑝𝑟, $𝑛⟧ if [$𝑠 .  {(𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑝𝑟 $𝑛)}] = $𝑛𝑎, and 1 ≤ $𝑛 ≤

[$𝑠 .  {(𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟)}].  

The attribute ((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑡 $𝑝𝑟 $𝑛) specifies the type of the $𝑛-th argument of the 

procedure $𝑝𝑟. A type $𝑡 is a type in ⟦$𝑝𝑟, $𝑛⟧ if [$𝑠 .  {((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑡 $𝑝𝑟 $𝑛)}] ≠ 𝑢𝑛𝑑, 

and 1 ≤ $𝑛 ≤ [$𝑠 .  {(𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟)}]. 

The attribute (𝑏𝑜𝑑𝑦 $𝑝𝑟) specifies the body of the procedure $𝑝𝑟. A sequence $𝑐∗ is a body in 

⟦$𝑝𝑟⟧ if [$𝑠 .  {(𝑏𝑜𝑑𝑦 $𝑝𝑟)}] = ($𝑐∗). 
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A call level is redefined in MPL4 as a number of embedded function and procedure calls. 

7.4.2. Constructs 

The procedure declaration is represented by the element 

(𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 $𝑝𝑟 ($𝑡𝑛𝑎1 …  $𝑡𝑛𝑎$𝑛) $𝑐∗). It specifies the declaration of the procedure $𝑝𝑟, the 

arguments $𝑛𝑎⟦$𝑡𝑛𝑎1⟧, ..., $𝑛𝑎⟦$𝑡𝑛𝑎$𝑛⟧ of the types $𝑡⟦$𝑡𝑛𝑎1⟧, ..., $𝑡⟦$𝑡𝑛𝑎$𝑛⟧, and the body $𝑐∗. 

Axiom: Procedure declarations are elements of the program body. 

The exit statement is represented by the element 𝑒𝑥𝑖𝑡. 

The procedure call is represented by the element (𝑐𝑎𝑙𝑙 $𝑝𝑟 $𝑐∗). It specifies the call of the 

procedure $𝑝𝑟 with the arguments $𝑐∗. 

7.5. MPL5: pointers 

The MPL5 language is an extension of MPL4 that adds the pointers feature: the pointer types, the 

operations of pointer content access, variable address access and pointer deletion, statements of 

pointer content assignment and pointer deletion. 

7.5.1. Types, values, states 

An element (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) is called a pointer type in ⟦$𝑡⟧. An element $𝑒 is a pointer type if $𝑒 is 

a pointer type in ⟦$𝑡⟧ for some $𝑡. Let $$𝑝𝑡 be a set of pointer types. 

The absolute type 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 specifies pointers in MPL5. An element $𝑒 ∈ $$𝑎𝑡𝑠 is a pointer if $𝑒 

has the absolute type 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, and the value in ⟦$𝑒⟧ belongs to $$𝑛. Thus, pointers are represented 

in MPL5 by natural numbers categorized by the type 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. Let $$𝑝𝑜 be a set of pointers. 

For MPL5, $$𝑡⟦𝑀𝑃𝐿5⟧ = $$𝑡⟦𝑀𝑃𝐿4⟧ ∪ $$𝑝𝑡, $$𝑣⟦MPL5⟧ = $$𝑣⟦MPL4⟧ ∪ $$𝑝𝑜, and 

$$𝑒𝑥⟦𝑀𝑃𝐿5⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿4⟧. 

The attribute (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑝𝑜) specifies pointers in states. A pointer $𝑝𝑜 is a pointer in ⟦$𝑠⟧ if 

[$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑝𝑜)}] ≠ 𝑢𝑛𝑑. 

The attribute ((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑝𝑜) specifies the content type of the pointer $𝑝𝑜. A type $𝑡 is a 

content type in ⟦$𝑝𝑜,  $𝑠⟧ if [$𝑠 .  {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒)$𝑝𝑜)}] = $𝑡. It specifies the type of the content 

to which the pointer $𝑝𝑜 refers. 

Axiom: If [$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑝𝑜)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑝𝑜)}] ∈ $$𝑡⟦$𝑠⟧. 

The pointer $𝑝𝑜 has the type (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) in ⟦$𝑠⟧ if $𝑡 is a content type in ⟦$𝑝𝑜,  $𝑠⟧. Thus, the 

type (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) specifies pointers with the content type $𝑡.  

The attribute (𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜) specifies the content of the pointer $𝑝𝑜. A value $𝑣 is a content in 

⟦$𝑝𝑜,  $𝑠⟧ if [$𝑠 .  {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜)}] = $𝑣.  
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Axiom: If [$𝑠 .  {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑝𝑜)}] = $𝑡, and 

[$𝑠 .  {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡⟦$𝑠⟧.  

The attribute (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙) specifies variables in ⟦$𝑠𝑐, $𝑐𝑙⟧ by the pointers referring to 

their values. A name $𝑛𝑎 is a variable in ⟦$𝑝,  $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙)}] = $𝑝. 

A variable $𝑣𝑎 represents $𝑝 in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ if $𝑣𝑎 is a variable in ⟦$𝑝,  $𝑠, $𝑠𝑐, $𝑐𝑙⟧. A name $𝑛𝑎 

is a variable in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ if $𝑛𝑎 is a variable in ⟦$𝑝,  $𝑠, $𝑠𝑐, $𝑐𝑙⟧ for some $𝑝 ∈ $$𝑝⟦$𝑠⟧. A 

pointer $𝑝 is a pointer in ⟦$𝑣𝑎, $𝑠,  $𝑠𝑐, $𝑐𝑙⟧ if $𝑣𝑎 is a variable in ⟦$𝑝,  $𝑠, $𝑠𝑐, $𝑐𝑙⟧.  

The content of the pointer $𝑝⟦$𝑣𝑎⟧ coincides with the value of the variable $𝑣𝑎. A type $𝑡 is a 

type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 .  {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) [$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙)}])}] = $𝑡. A 

value $𝑣 is a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 .  {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}])}] = $𝑣. 

Axiom: If [$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, then [$𝑠 .  {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ∈

$$𝑝𝑜⟦$𝑠⟧.  

7.5.2. Constructs 

Pointers are represented by elements of $$𝑝𝑜. 

The pointer content access operation is represented by the element (∗  $𝑐). If $𝑝𝑜 is a value of $𝑐, 

then it returns the content in ⟦$𝑝𝑜⟧. 

The variable address access operation is represented by the element (& 𝑣𝑎). It returns the pointer 

in ⟦$𝑠, $𝑣𝑎, [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}], [$𝑠 .  {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙)}]⟧. 

The pointer addition operation is represented by the element (𝑛𝑒𝑤 $𝑝𝑡). It adds a new pointer of 

the type $𝑝𝑡. 

The pointer content assignment statement is represented by the element (∗  $𝑐1 : =  $𝑐2). If $𝑝𝑜 

and $𝑣 are the values of $𝑐1 and $𝑐2, and they have the types (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) and $𝑡 for some $𝑡, then 

it assigns $𝑣 to the content of $𝑝𝑜.  

The pointer deletion operation is represented by the element (𝑑𝑒𝑙𝑒𝑡𝑒 $𝑐). If $𝑝𝑜 is a value of $𝑐, 

then it specifies the deletion of the pointer $𝑝𝑜. 

7.6. MPL6: jump statements 

The MPL6 language is an extension of MPL5 that adds the jump statements feature: break 

statement, continue statement, goto statement and labelled statement.  

7.6.1. Types, values, states 

The exception (𝑏𝑟𝑒𝑎𝑘: {𝑡𝑦𝑝𝑒}): : {𝑒𝑥𝑐} specifies the execution of the break statement. 

The exception (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒: {𝑡𝑦𝑝𝑒}): : {𝑒𝑥𝑐} specifies the execution of the continue statement. 
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The exception (𝑔𝑜𝑡𝑜: {𝑡𝑦𝑝𝑒},  $𝑙: {𝑙𝑎𝑏𝑒𝑙}): : {𝑒𝑥𝑐} specifies the execution of the goto statement 

with the label $𝑙. 

Let $$𝑒𝑥1 be a set of such exceptions. 

For MPL6, $$𝑡⟦MPL6⟧ = $$𝑡⟦MPL5⟧, $$𝑣⟦MPL6⟧ = $$𝑣⟦MPL5⟧ ∪ $$𝑒𝑥⟦MPL6⟧, and 

$$𝑒𝑥⟦𝑀𝑃𝐿6⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿5⟧ ∪ $$𝑒𝑥1. 

An element $𝑙 is a label if $𝑙 is a name. Let $$𝑙 be a set of labels. 

 7.6.2. Constructs 

The label statement with the label $𝑙 is represented by the element (𝑙𝑎𝑏𝑒𝑙 $𝑙). It specifies the 

program point labelled by the label $𝑙. The labelled statement is represented by the sequence 

(𝑙𝑎𝑏𝑒𝑙 $𝑙) $𝑐. It specifies that the statement $𝑐 is labelled by the label $𝑙.  

The break statement is represented by the element 𝑏𝑟𝑒𝑎𝑘. 

The continue statement is represented by the element 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒. 

The goto statement is represented by the element (𝑔𝑜𝑡𝑜 $𝑙). 

7.7. MPL7: dynamic arrays 

The MPL7 language is an extension of MPL6 that adds the dynamic arrays feature: dynamic array 

types, the array element access operation and the array element assignment statement.  

7.7.1. Types, values, states 

An element (𝑎𝑟𝑟𝑎𝑦 $𝑡) is called a dynamic array type in ⟦$𝑡⟧. An element $𝑒 is a dynamic array 

type if $𝑒 is a dynamic array type in ⟦$𝑡⟧ for some $𝑡. Let $$𝑑𝑎𝑡 be a set of dynamic array types.  

An element $𝑒 is an array type if $𝑒 is a dynamic array type. Let $$𝑎𝑡 be a set of array types. 

The absolute type (𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑟𝑎𝑦) specifies dynamic arrays. An element $𝑑𝑎𝑟 is a dynamic 

array if $𝑑𝑎𝑟 = (($𝑒∗): {𝑐𝑜𝑛𝑡𝑒𝑛𝑡},  $𝑡: {𝑡𝑦𝑝𝑒}): : {(𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑟𝑎𝑦)}, and $𝑒∗ consists of the 

elements of [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡]. The elements $se and $t are called the content and the element type in 

⟦$𝑑𝑎𝑟⟧. Let $$𝑑𝑎𝑟 be a set of dynamic arrays.  

An element $𝑒 is an array if $𝑒 is a dynamic array. Let $$𝑎𝑟 be a set of arrays. 

For MPL7, $$𝑡⟦𝑀𝑃𝐿7⟧ = $$𝑡⟦𝑀𝑃𝐿6⟧ ∪ $$d𝑎𝑡, $$𝑣⟦MPL7⟧ = $$𝑣⟦MPL6⟧ ∪ $$𝑑𝑎𝑟, and 

$$𝑒𝑥⟦𝑀𝑃𝐿7⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿6⟧. 

The dynamic array $𝑑𝑎𝑟 has the type (𝑎𝑟𝑟𝑎𝑦 $𝑡) if $𝑡 is an element type in ⟦$𝑑𝑎𝑟,  $𝑠⟧. Thus, the 

type (𝑎𝑟𝑟𝑎𝑦 $𝑡) specifies dynamic arrays with the element type $𝑡.  

A value $𝑣 is a value in ⟦$𝑎𝑟,  $𝑛⟧ if [[$𝑎𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]. .  $𝑛] = $𝑣. The element $𝑣 specifies the 

value of $𝑛-th element of $𝑎𝑟.  
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7.7.2. Constructs 

The array element access operation is represented by the element ($𝑐1 [ $𝑐2 ]). If $𝑎𝑟 and $𝑛 are 

the values of $𝑐1 and $𝑐2, then it returns the value in ⟦$𝑎𝑟,  $𝑛,  $𝑠⟧. 

The array element assignment operation is represented by the element ($𝑐1 [$𝑐2] ≔ $𝑐3). If 

$𝑑𝑎𝑟, $𝑛 and $𝑣 are the values of $𝑐1, $𝑐2 and $𝑐3, and 1 ≤ $𝑛 ≤ [𝑙𝑒𝑛 [$𝑑𝑎𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]], then 

it replaces the value of the $𝑛-th element of $𝑑𝑎𝑟 by $𝑣. If $𝑑𝑎𝑟, $𝑛 and $𝑣 are the values of $𝑐1, 

$𝑐2 and $𝑐3, and $𝑛 > [𝑙𝑒𝑛 [$𝑑𝑎𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]], then it replaces the value of the $𝑛-th element of 

$𝑑𝑎𝑟 by $𝑣 and the values of the elements of $𝑑𝑎𝑟 from [𝑙𝑒𝑛 [$𝑑𝑎𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]] + 1 to $𝑛 − 1 by 

𝑢𝑛𝑑. 

The array element assignment operation is represented by the element ($𝑐1 [$𝑐2] ≔ $𝑐3) where 

the expressions $𝑐1, $𝑐2 and $𝑐3 have the types (𝑎𝑟𝑟𝑎𝑦 $𝑡), 𝑛𝑎𝑡 and $𝑡 for some $𝑡. It assigns $𝑣 to 

the $𝑛-th element of $𝑎𝑟 where $𝑎𝑟, $𝑛 and $𝑣 are the values of $𝑐1, $𝑐2 and $𝑐3 in ⟦$𝑠⟧.   

7.8. MPL8: static arrays 

The MPL7 language is an extension of MPL6 that adds the static arrays feature: static array types, 

the array element access operation and the array element assignment statement.  

7.8.1. Types, values, states 

An element (𝑎𝑟𝑟𝑎𝑦 $𝑡 $𝑛) is called a static array type in ⟦$𝑡⟧. An element $𝑒 is a static array type 

if $𝑒 is a static array type in ⟦$𝑡⟧ for some $𝑡. Let $$𝑠𝑎𝑡 be a set of static array types.  

An element $𝑒 is an array type if $𝑒 is a dynamic array type, or $𝑒 is a static array type. Let $$𝑎𝑡 

be a set of array types. 

The absolute type (𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑟𝑟𝑎𝑦) specifies arrays. An element $𝑠𝑎𝑟 is a static array if $𝑠𝑎𝑟 =

(($𝑒∗): {𝑐𝑜𝑛𝑡𝑒𝑛𝑡},  $𝑡: {𝑡𝑦𝑝𝑒}): : {(𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑟𝑟𝑎𝑦)}, and $𝑒∗ consists of the elements of 

[𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡]. The elements $se and $t are called the content and the element type in ⟦$𝑠𝑎𝑟⟧. Let 

$$𝑠𝑎𝑟 be a set of arrays.  

An element $𝑒 is an array if $𝑒 is a dynamic array, or $𝑒 is a static array. Let $$𝑎𝑟 be a set of 

arrays 

For MPL7, $$𝑡⟦𝑀𝑃𝐿7⟧ = $$𝑡⟦𝑀𝑃𝐿6⟧ ∪ $$s𝑎𝑡, $$𝑣⟦MPL7⟧ = $$𝑣⟦MPL6⟧ ∪ $$𝑠𝑎𝑟, and 

$$𝑒𝑥⟦𝑀𝑃𝐿7⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿6⟧. 

The array $𝑠𝑎𝑟 has the type (𝑎𝑟𝑟𝑎𝑦 $𝑡 $𝑛) if $𝑡 is an element type in ⟦$𝑠𝑎𝑟,  $𝑠⟧, and 

[𝑙𝑒𝑛 [$𝑠𝑎𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]] = $𝑛. Thus, the type (𝑎𝑟𝑟𝑎𝑦 $𝑡 $𝑛) specifies static arrays with the element 

type $𝑡 and the content of the length $𝑛. 
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7.8.2. Constructs 

The array element access operation does not depend on the specific features of dynamic arrays. 

Therefore it is extended for static arrays by simple array redefinition. 

The array element assignment operation is extended for static arrays as follows: if $𝑠𝑎𝑟, $𝑛 and 

$𝑣 are the values of $𝑐1, $𝑐2 and $𝑐3, and 1 ≤ $𝑛 ≤ [𝑙𝑒𝑛 [$𝑠𝑎𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]], then ($𝑐1 [$𝑐2] ≔

$𝑐3) replaces the value of the $𝑛-th element of $𝑠𝑎𝑟 by $𝑣. 

7.9. MPL9: structures 

The MPL9 language is an extension of MPL8 that adds the structures feature: the structure types, 

the structure field access operation, structure declarations, and the structure field assignment 

statement.  

7.9.1. Types, values, states 

The attribute ((𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑦𝑝𝑒) $𝑛𝑎) specifies structure types in states. A name $𝑛𝑎 is a structure 

type in ⟦$𝑠⟧ if [$𝑠 .  {((𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑦𝑝𝑒) $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑠𝑡 be a set of structure types. 

For MPL9, $$𝑡⟦𝑀𝑃𝐿9⟧ = $$𝑡⟦𝑀𝑃𝐿8⟧ ∪ $$𝑠𝑡. 

The attribute (𝑓𝑖𝑒𝑙𝑑 $𝑛𝑎 $𝑠𝑡) specifies the fields of the structure type $𝑠𝑡. A name $𝑓𝑖 is a field 

in ⟦$𝑠𝑡, $𝑠⟧ if [$𝑠 .  {(𝑓𝑖𝑒𝑙𝑑 $𝑓𝑖 $𝑠𝑡)}] ≠ 𝑢𝑛𝑑. Let $$𝑓𝑖 be a set of fields. 

The attribute (𝑡𝑦𝑝𝑒 $𝑓𝑖 $𝑠𝑡) specifies the type of the field $𝑓𝑖 of the structure type $𝑠𝑡. A type $𝑡 

is a type in ⟦$𝑓𝑖,  $𝑠𝑡,  $𝑠⟧ if [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑓𝑖 $𝑠𝑡)}] = $𝑡. 

Axiom: If $𝑓𝑖 is a field in ⟦$𝑠𝑡, $𝑠⟧, then [$𝑠 .  {(𝑡𝑦𝑝𝑒 $𝑠𝑡 $𝑓𝑖)}] ∈ $$𝑡⟦$𝑠⟧. 

The absolute type 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 specifies structures. An element $𝑠𝑡𝑟 is a structure in ⟦$𝑠⟧ if 

(($𝑣1: {$𝑓𝑖1} …  $𝑣$𝑛: {$𝑓𝑖$𝑛}): {𝑐𝑜𝑛𝑡𝑒𝑛𝑡},  $𝑠𝑡: {𝑡𝑦𝑝𝑒}): : {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒} = $𝑠𝑡𝑟, $𝑛 > 0, the 

structure type $𝑠𝑡 has the fields $𝑓𝑖1, …, $𝑓𝑖$𝑛 and no other fields in ⟦$𝑠⟧, and the values $𝑣1, …, 

$𝑣$𝑛 in ⟦$𝑠⟧ have the types of the fields $𝑓𝑖1, …, $𝑓𝑖$𝑛 in ⟦$𝑠𝑡, $𝑠⟧. The elements 

[$𝑠𝑡𝑟 .  {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}] and $𝑠𝑡 are called the content and the type in ⟦$𝑠𝑡𝑟⟧. The elements $𝑓𝑖1, …, 

$𝑓𝑖$𝑛 are called the fields in ⟦$𝑠𝑡𝑟⟧. The elements $𝑣1, …, $𝑣$𝑛 are called the values of these fields 

in ⟦$𝑠𝑡⟧. Let $$𝑠𝑡𝑟 be a set of structures. 

For MPL9, $$𝑣⟦𝑀𝑃𝐿9⟧ = $$𝑣⟦𝑀𝑃𝐿8⟧ ∪ $$𝑠𝑡𝑟, and $$𝑒𝑥⟦𝑀𝑃𝐿9⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿8⟧. 

 7.9.2. Constructs 

The structure declaration is represented by the element (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 $𝑛𝑎 ($𝑡𝑛𝑎1 …  $𝑡𝑛𝑎$𝑛)). It 

specifies the declaration of the structure type with the name $𝑛𝑎, and the fields $𝑛𝑎⟦$𝑡𝑛𝑎1⟧, ..., 

$𝑛𝑎⟦$𝑡𝑛𝑎$𝑛⟧ of the types $𝑡⟦$𝑡𝑛𝑎1⟧, ..., $𝑡⟦$𝑡𝑛𝑎$𝑛⟧. 
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Axiom: structure declarations are elements of the program body. 

The structure field access operation is represented by the element ($𝑐 \.  $𝑓𝑖). If $𝑠𝑡𝑟 is the value 

of $𝑐, then it returns the value in ⟦$𝑓𝑖, $𝑠𝑡𝑟,  $𝑠⟧. 

The structure field assignment operation is represented by the element ($𝑐1 \.  $𝑓𝑖 ≔ $𝑐2). If $𝑠𝑡𝑟 

and $𝑣 are the values of $𝑐1 and $𝑐2, then it assigns $𝑣 to the field $𝑓𝑖 of $𝑠𝑡𝑟. 

8. Conclusion 

In the paper the formalism of the conceptual model of a programming language has been proposed. 

It represents types of the programming language, values (in particular, the values of the types the 

programming language), exceptions (the special kind of values), states and executable constructs (in 

particular, the elements of programs in the programming language) of the abstract machine of the 

language, and the constraints (axioms) for these entities at the conceptual level. The new definition 

of conceptual transition systems oriented to specification of conceptual models of programming 

languages has been proposed, the language CTSL for redefined conceptual transition systems has 

been described, and the technique of the use of CTSL as a domain-specific language for specification 

of conceptual models of programming languages has been presented. We have conducted the 

incremental development of the conceptual models for the family of sample programming languages 

to illustrate this technique. 

We plan to use the CTSL language as a domain specific language oriented to the development of 

the conceptual operational semantics of programming languages defined as the operational semantics 

of representations of executable constructs of the abstract machines of the programming languages in 

CTSL.  
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