
System Informatics (Системная информатика), No. 9 (2017) 133

УДК 004.8

Conceptual transition systems and their application to

development of conceptual models of programming languages*

Anureev I.S. (Institute of Informatics Systems),

Promsky A.V. (Institute of Informatics Systems)

In the paper the notion of the conceptual model of a programming language is proposed. This

formalism represents types of the programming language, values, exceptions, states and

executable constructs of the abstract machine of the language, and the constraints for these entities

at the conceptual level. The new definition of conceptual transition systems oriented to

specification of conceptual models of programming languages is presented, the language of

redefined conceptual transition systems CTSL is described, and the technique of the use of CTSL

as a domain-specific language of specification of conceptual models of programming languages

is proposed. The conceptual models for the family of sample programming languages illustrate

this technique.

Keywords: operational semantics, conceptual transition system, programming language,

conceptual model, domain-specific language

1. Introduction

This paper relates to the development of operational semantics of programming languages.

Following [1], we distinguish two parts of the operational semantics of a programming language. The

structural part defines how the elements of the language relate to runtime elements that an abstract

machine of the programming language can use at runtime. The structural part is called instantiation

semantics or structure-only semantics [2]. The dynamic part describes the actual state changes that

take place at runtime.

In traditional operational semantics approaches [3–6], the main focus is on state changes, while

the structural part is defined ad-hoc. The modern programming languages becomes more complex.

Therefore, development of formalisms, languages and frameworks to describe the instantiation

semantics is very important problem.

* Partially supported by RFBR under grants 15-01-05974 and 17-01-00789 and SB RAS interdisciplinary integration

project No.15/10.

134 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

The meta-model-based object-oriented approach [1] to description of the instantiation semantics

uses MOF (EMF) [7]. The algebraic approach [8] is based on abstract state machines. Abstract state

machines are the special kind of transition systems in which states are algebraic systems. The

structural part of the operational semantics is flexibly modelled by the appropriate choice of the

symbols of the signature of an algebraic system. Rewrite-based approach is implemented in the

frameworks K [9] and Maude [10].

These approaches do not take into account the natural conceptual nature of instantiation semantics

which is easier to describe in the ontological terms of concepts, their instances and attributes.

In this paper, we introduce the notion of the conceptual model of a programming language. This

formalism describes the instantiation semantics at the conceptual level. The conceptual model is

specified in terms of conceptual transition systems (CTSs) [11] in the language of conceptual

transition systems CTSL [12]. Thus, CTSL acts as a domain-specific language oriented to

specification of conceptual models of programming languages.

The paper has the following structure. The preliminary concepts and notation are given in section

2. The new definition of CTSs is presented in section 3. The basic definitions of the theory of CTSs

are given in sections 4 and 5. The language CTSL for redefined CTSs is described in section 6. The

definition of the conceptual model of a programming language is introduced, and the technique of

development of conceptual models of programming languages is illustrated by the sample

programming language examples in section 7.

2. Preliminaries

The preliminary concepts and notation are given in this section.

2.1. Sets and sequences

Let $𝑤, $𝑤1, $𝑤2, … denote elements of the sort 𝑤, where 𝑤 is a word, and $$𝑤 denote the set

of all elements of the sort 𝑤. For example, if 𝑛 is a sort of natural numbers, then $𝑛, $𝑛1, … are

natural numbers, and $$n is the set of all natural numbers.

Let $$𝑜 and $$𝑠𝑒𝑡 be sets of objects and sets considered in this paper. Let $$𝑖, $$𝑛, and $$𝑏𝑜 be

sets of integers, natural numbers (with zero), and boolean values 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒.

Let $$𝑠𝑒 denote the set of finite sequences of the form $𝑜1 … $𝑜$𝑛. Let $$𝑤∗ denote the set of

finite sequences of the form $𝑤1 … $𝑤$𝑛, and $𝑤∗, $𝑤∗1, $𝑤∗2, and so on denote the elements of

the set $$𝑤∗. Let [𝑒𝑠] denote the empty sequence. Let $$𝑤+ denote the set of finite nonempty

sequences of the form $𝑤1 … $𝑤$𝑛, and $𝑤+, $𝑤+1, $𝑤+2, and so on denote the elements of the

set $$𝑤+.

System Informatics (Системная информатика), No. 9 (2017) 135

Let [𝑟𝑒𝑝𝑒𝑎𝑡 $𝑜 $𝑛] denote the sequence consisting of $𝑛-th occurrences of the object $𝑜.

Let [$𝑜 ∈ $𝑠𝑒] and [$𝑠𝑒1 ⊑ $𝑠𝑒2] denote $𝑜 ∈ {$𝑠𝑒} and {$𝑠𝑒1} ⊑ {$𝑠𝑒2}. Let [𝑙𝑒𝑛 $𝑠𝑒] denote

the length of $se. Let 𝑢𝑛𝑑 denote the undefined value. Let [$𝑠𝑒 . . $𝑛] denote the $𝑛-th element of

$𝑠𝑒. If [𝑙𝑒𝑛 $𝑠𝑒] < $𝑛, then [$𝑠𝑒 . . $𝑛] = 𝑢𝑛𝑑. Let [$𝑠𝑒 . . $𝑛 : = $𝑜] denote the result $𝑠𝑒1 of

replacement of $𝑛-th element in $𝑠𝑒 by $𝑜. If $𝑛 > [𝑙𝑒𝑛 $𝑠𝑒], then $𝑠𝑒1 =

$𝑠𝑒 [𝑟𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑑 [[𝑙𝑒𝑛 $𝑠𝑒] − $𝑛 − 1]] $𝑜.

Let [$𝑜 ∈ $𝑠𝑒] and [$𝑠𝑒1 ⊑ $𝑠𝑒2] denote $𝑜 ∈ {$𝑠𝑒} and {$𝑠𝑒1} ⊑ {$𝑠𝑒2}. Let [𝑙𝑒𝑛 $𝑠𝑒] denote

the length of $se. Let 𝑢𝑛𝑑 denote the undefined value. Let [$𝑠𝑒 . . $𝑛] denote the $𝑛-th element of

$𝑠𝑒. If [𝑙𝑒𝑛 $𝑠𝑒] < $𝑛, then [$𝑠𝑒 . . $𝑛] = 𝑢𝑛𝑑. Let [$𝑠𝑒 . . $𝑛 : = $𝑜] denote the result $𝑠𝑒1 of

replacement of $𝑛-th element in $𝑠𝑒 by $𝑜. If $𝑛 = [𝑙𝑒𝑛 $𝑠𝑒] + 1, then $𝑠𝑒1 = $𝑠𝑒 $𝑜. If $𝑛 >

[𝑙𝑒𝑛 $𝑠𝑒] + 1, then $𝑠𝑒1 = 𝑢𝑛𝑑.

Let [$𝑜1 ≺⟦$𝑠𝑒⟧ $𝑜2] denote the fact that there exist $𝑜∗1, $𝑜∗2 and $𝑜∗3 such that $𝑠𝑒 =

$𝑜∗1 $𝑜1 $𝑜∗2 $𝑜2 $𝑜∗3.

Let [$𝑜 $𝑜1 ↩ $𝑜2] denote the result of replacement of all occurrences of $𝑜1 in $𝑜 by $𝑜2. Let

[$𝑠𝑒 $𝑜 ↩∗ $𝑜1] denote the result of replacement of each element $𝑜2 in $𝑠𝑒 by [$𝑜1 $𝑜 ↩ $𝑜2].

For example, [𝑎 𝑏 𝑥 ↩∗ (𝑓 𝑥)] denotes (𝑓 𝑎) (𝑓 𝑏).

Let $𝑜1, $𝑜2 ∈ $$𝑠𝑒 ∪ $$𝑠𝑒𝑡. Then [$𝑜1 =𝑠𝑒𝑡 $𝑜2] denote that the sets of elements of $𝑜1 and

$𝑜2 coincide, and [$𝑜1 =𝑚𝑢𝑙 $𝑜2] denote that the multisets of elements of $𝑜1 and $𝑜2 coincide.

The above defined operations on the set $$𝑠𝑒 are also applied to the set {($𝑠𝑒) | $𝑠𝑒 ∈ $$𝑠𝑒}. The

results of [($𝑠𝑒) . . $𝑛], [$𝑜 ∈ ($𝑠𝑒)], [($𝑠𝑒1) ⊑ ($𝑠𝑒2)], [$𝑜1 ≺⟦($𝑠𝑒)⟧ $𝑜2], [($𝑠𝑒) $𝑜 ↩∗ $𝑜1],

[𝑙𝑒𝑛 ($𝑠𝑒)], [($𝑠𝑒) . . $𝑛 ≔ $𝑜] and [𝑎𝑛𝑑 ($𝑠𝑒)] are [$𝑠𝑒 . . $𝑛], [$𝑜 ∈ $𝑠𝑒], [$𝑠𝑒1 ⊑ $𝑠𝑒2],

[$𝑜1 ≺⟦$𝑠𝑒⟧ $𝑜2], [$𝑠𝑒 $𝑜 ↩∗ $𝑜1], [𝑙𝑒𝑛 $𝑠𝑒], [$𝑠𝑒 . . $𝑛 ≔ $𝑜] and [𝑎𝑛𝑑 $𝑠𝑒].

Let [(𝑜∗) + ($𝑜∗1)], [$𝑜 . +(𝑜∗)] and [(𝑜∗) +. $𝑜] denote ($𝑜∗ $𝑜∗1), ($𝑜 $𝑜∗) and ($𝑜∗ $𝑜).

2.2. Contexts

The terms used in the paper can be context-dependent. A context has the form ⟦$𝑜∗⟧. The elements

of $𝑜∗ are called embedded contexts. The context in which some embedded contexts are omitted is

called a partial context. All omitted embedded contexts are considered bound by the existential

quantifier, unless otherwise specified.

Let $o⟦$𝑜∗⟧ denote the object $o in the context ⟦$𝑜∗⟧. The expression 'in ⟦$𝑜1, $𝑜∗⟧' can be

rewritten as 'in ⟦$𝑜1⟧ in ⟦$𝑜∗⟧', if this does not lead to ambiguity.

136 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

2.3. Functions

Let $$𝑓 be a set of functions. Let $$𝑎 and $$𝑣 be sets of objects called arguments and values. Let

[$𝑓 𝑎∗] denote the result of application of $𝑓 to $𝑎∗. Let [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] denote the support in ⟦$𝑓⟧, i.

e. [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] = {$𝑎 | [$𝑓 $𝑎] ≠ 𝑢𝑛𝑑}. Let [𝑖𝑚𝑎𝑔𝑒 $𝑓 $𝑠𝑒𝑡] denote the image in ⟦$𝑓, $𝑠𝑒𝑡⟧, i. e.

[𝑖𝑚𝑎𝑔𝑒 $𝑓 $𝑠𝑒𝑡] = {[$𝑓 $𝑎] : $𝑎 ∈ $𝑠𝑒𝑡}. Let [𝑖𝑚𝑎𝑔𝑒 $𝑓] denote the image in ⟦$𝑓, [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓]⟧.

Let [𝑛𝑎𝑟𝑟𝑜𝑤 $𝑓 $𝑠𝑒𝑡] denote the function $𝑓1 such that [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1] = [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] ∩ $𝑠𝑒𝑡,

and [$𝑓1 $𝑎] = [$𝑓 $𝑎] for each $𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1]. The function $𝑓1 is called a narrowing of $𝑓

to $𝑠𝑒𝑡. Let [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1] ∩ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓2] = ∅. Let $𝑓1 ∪ $𝑓2 denote the union $𝑓 of $𝑓1 and

$𝑓2 such that [$𝑓 $𝑎] = [$𝑓1 $𝑎] for each $𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1], and [$𝑓 $𝑎] = [$𝑓2 $𝑎] for each

$𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓2]. Let $𝑓1 ⊆ $𝑓2 denote the fact that [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1] ⊆ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓2], and

[$𝑓1 $𝑎] = [$𝑓2 $𝑎] for each $𝑎 ∈ [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓1].

An object $𝑢 of the form $𝑎 : = $𝑣 is called an update. The objects $𝑎 and $𝑣 are called an

argument and values in ⟦$𝑢⟧. Let $$𝑢 be a set of updates.

Let [$𝑓 $𝑢] denote the function $𝑓1 such that [$𝑓1 $𝑎] = [$𝑓 $𝑎] if $𝑎 ≠ $𝑎⟦$𝑢⟧, and

[$𝑓1 $𝑎⟦$𝑢⟧] = $𝑣⟦$𝑢⟧. Let [$𝑓 $𝑢 $𝑢∗] be a shortcut for [[$𝑓 $𝑢] $𝑢∗]. Let

[$𝑓 $𝑎. $𝑎1. … . $𝑎$𝑛 ≔ $𝑣] be a shortcut for [$𝑓 $𝑎 ≔ [[$𝑓 $𝑎] $𝑎1. … . $𝑎$𝑛 ≔ $𝑣]]. Let [$𝑢∗]

be a shortcut for [$𝑓 $𝑢∗], where [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑓] = ∅.

Let [𝑖𝑓 $𝑐𝑜𝑛 𝑡h𝑒𝑛 $𝑜1 𝑒𝑙𝑠𝑒 $𝑜2] denote the object $𝑜 such that $𝑜 = $𝑜1 for $𝑐𝑜𝑛 = 𝑡𝑟𝑢𝑒, and

$𝑜 = $𝑜2 for $𝑐𝑜𝑛 = 𝑓𝑎𝑙𝑠𝑒.

3. Conceptual transition systems

The notion of conceptual transition systems (CTSs) is based on the notion of conceptual structures.

Let $$𝑎𝑡𝑜 be a set of objects called atoms.

The set $$𝑐𝑠 of conceptual structures in ⟦$$𝑎𝑡𝑜⟧ is defined as follows:

 $𝑎𝑡𝑜 ∈ $$𝑐𝑠;

 ($𝑐𝑠∗) ∈ $$𝑐𝑠;

 if the elements of $𝑐𝑠+ are pairwise distinct, and $𝑐𝑠 ≠ 𝑢𝑛𝑑, then $𝑐𝑠: ($𝑐𝑠+) ∈ $$𝑠;

 if the elements of $𝑐𝑠+ are pairwise distinct, and $𝑐𝑠 ≠ 𝑢𝑛𝑑, then ($𝑐𝑠+): : $𝑐𝑠 ∈ $$𝑐𝑠.

A structure $𝑐𝑠 is atomic if $𝑐𝑠 ∈ $$𝑎𝑡𝑜.

A structure $𝑐𝑐𝑠 is a compound structure if $𝑐𝑐𝑠 has the form ($𝑐𝑠∗). The operation (…) is called

a sequential composition. A structure $𝑐𝑠 is an element in ⟦$𝑐𝑐𝑠⟧ if $𝑐𝑠∗ = $𝑐𝑠∗1 $𝑐𝑠 $𝑐𝑠∗2 for

some $𝑐𝑠∗1 and $𝑐𝑠∗2. The structure () is called an empty structure. Let $$𝑐𝑐𝑠 be a set of compound

structures.

System Informatics (Системная информатика), No. 9 (2017) 137

Let $$𝑡 and $$𝑣 be sets of objects called types and values. An object $𝑚𝑡 is a multi-type if $𝑚𝑡 =

(𝑡+). Let $$𝑚𝑡 be a set of multi-types. An object $𝑚𝑣 is a multi-value if $𝑚𝑣 = (𝑣+). Let $$𝑚𝑣 be

a set of multi-values.

A structure $𝑐𝑠 is an absolutely typed structure if $𝑐𝑠 = $𝑣: : $𝑚𝑡. The operation … : : (…) is called

an absolute typification operation. Let $$𝑎𝑡𝑐𝑠 be a set of absolutely typed structures.

A structure $𝑡 is an absolute type in ⟦$𝑎𝑡𝑐𝑠⟧ if $𝑎𝑡𝑐𝑠 = $𝑣: : $𝑚𝑡, and $𝑡 ∈ $𝑚𝑡 for some $𝑣 and

$𝑚𝑡. A structure $𝑎𝑡𝑐𝑠 has an absolute type $𝑡 if $𝑡 is an absolute type in ⟦$𝑎𝑡𝑐𝑠⟧. A structure $𝑣 is

a value in ⟦𝑎𝑡𝑐𝑠⟧ if $𝑎𝑡𝑐𝑠 = $𝑣: : $𝑚𝑡 for some $𝑚𝑡.

A structure $𝑚𝑡 is an absolute multi-type in ⟦$𝑎𝑡𝑐𝑠⟧ if $𝑎𝑡𝑐𝑠 = $𝑣: : $𝑚𝑡1, and $𝑚𝑡 ⊆ $𝑚𝑡1 for

some $𝑣 and $𝑚𝑡1. A structure $𝑎𝑡𝑐𝑠 has an absolute multi-type $𝑚𝑡 if $𝑚𝑡 is an absolute multi-

type in ⟦$𝑎𝑡𝑐𝑠⟧.

The absolute typification operation categorizes structures, using absolute types as category names

and absolute multi-types as category unions. It also models instance constructors for these categories.

For example, the structure "𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜": : (𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛) specifies the value (instance) of the

type (category) 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 as the result of application of the instance constructor ∷ (𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛) to

the argument "𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜".

A structure $𝑐𝑠 is a relatively typed structure if $𝑐𝑠 = $𝑣: $𝑚𝑡. The operation … : (…) is called a

relative typification operation. Let $$𝑟𝑡𝑐𝑠 be a set of relatively typed structures.

A structure $𝑡 is a relative type in ⟦$𝑣, ($𝑐𝑠∗)⟧ if $𝑐𝑠∗ = $𝑐𝑠∗1 $𝑣: $𝑚𝑡 $𝑐𝑠∗2, and $𝑡 ∈ $𝑚𝑡 for

some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡. A structure $𝑡 is a relative type in ⟦$𝑐𝑐𝑠⟧ if $𝑡 is a relative type in

⟦$𝑣, $𝑐𝑐𝑠⟧ for some $𝑣. A structure $𝑣 has a relative type $𝑡 in ⟦$𝑐𝑐𝑠⟧ if $𝑡 is a relative type in

⟦$𝑣, $𝑐𝑐𝑠⟧. A structure $𝑐𝑐𝑠 has a relative type $𝑡 if $𝑡 is a relative type in ⟦$𝑐𝑐𝑠⟧. A structure $𝑣 is

a value in ⟦$𝑟𝑡𝑐𝑠⟧ if $𝑟𝑡𝑐𝑠 = $𝑣: $𝑚𝑡 for some $𝑚𝑡. A structure $𝑣 is a value in ⟦$𝑡, $𝑟𝑡𝑐𝑠⟧ if

$𝑐𝑠∗ = $𝑐𝑠∗1 $𝑣: $𝑚𝑡 $𝑐𝑠∗2, and $𝑡 ∈ $𝑚𝑡 for some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡.

A structure $𝑚𝑡 is a relative multi-type in ⟦$𝑣, ($𝑐𝑠∗)⟧ if $𝑐𝑠∗ = $𝑐𝑠∗1 $𝑣: $𝑚𝑡1 $𝑐𝑠∗2, and

$𝑚𝑡 ⊆ $𝑚𝑡1 for some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡. A structure $𝑚𝑡 is a relative multi-type in ⟦$𝑐𝑐𝑠⟧ if

$𝑚𝑡 is a relative multi-type in ⟦$𝑣, $𝑐𝑐𝑠⟧ for some $𝑣. A structure $𝑣 has a relative multi-type $𝑚𝑡

in ⟦$𝑐𝑐𝑠⟧ if $𝑚𝑡 is a relative multi-type in ⟦$𝑣, $𝑐𝑐𝑠⟧. A structure $𝑐𝑐𝑠 has a relative multi-type $𝑚𝑡

if $𝑚𝑡 is a relative multi-type in ⟦$𝑐𝑐𝑠⟧. A structure $𝑣 is a value in ⟦$𝑚𝑡, $𝑟𝑡𝑐𝑠⟧ if $𝑐𝑠∗ =

$𝑐𝑠∗1 $𝑣: $𝑚𝑡1 $𝑐𝑠∗2, and $𝑚𝑡 ⊆ $𝑚𝑡1 for some $𝑐𝑠∗1, $𝑐𝑠∗2 and $𝑚𝑡.

The relative typification operation categorizes elements of compound structures using relative

types as category names and relative multi-types as category unions.

138 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

A structure $𝑐𝑠 is typed if $𝑐𝑠 is relatively typed, or $𝑐𝑠 is absolutely typed. Let $$𝑡𝑐𝑠 be a set of

typed structures.

Conceptual transition systems are transition systems that have elements, and in which elements

and states are conceptual structures.

Let $$𝑠 be a set of objects called states. A subset of the set $$𝑠 × $$𝑠 is called a transition relation.

Let $$𝑡𝑟 be a set of transition relations. A pair ($$𝑠, ↪) is a transition system if ↪∈ $$𝑡𝑟.

An object $𝑐𝑡𝑠 of the form ($$𝑎𝑡𝑜, $$𝑖𝑠, ↪) is a conceptual transition system if ($$𝑐𝑠⟦$𝑎𝑡𝑜⟧, ↪)

is a transition system, and $$𝑖𝑠 ⊆ $$𝑐𝑠. The elements of $$𝑎𝑡𝑜 and $$𝑖𝑠 are called atoms and initial

states in ⟦$𝑐𝑡𝑠⟧. The relation ↪ is called a transition relation in ⟦$𝑐𝑡𝑠⟧. Let $$𝑐𝑡𝑠 be a set of CTSs.

The sets $$𝑠 and $$𝑒 of states and elements in ⟦$$𝑐𝑡𝑠⟧ are defined as follows: $$𝑠 = $$𝑒 = $$𝑐𝑠.

Let [. $𝑚𝑡], [. $𝑚𝑡 ≔ $𝑣] and [. $𝑚𝑡 ≔] denote [$𝑠 . $𝑚𝑡], [$𝑠 . $𝑚𝑡 ≔ $𝑣] and [$𝑠 . $𝑚𝑡 ≔]

for the current state $𝑠.

4. The CTSL language

Let $$𝑠𝑎 be a set of syntactic constructs called special atoms.

The CTSL language is a basic language of CTSs. It only defines the syntax of conceptual structures

and does not concretize the set $$𝑠𝑎 and the transition relation ↪. The extensions of CTSL for the

special kinds of CTSs use the CTSL syntax and concretize $$𝑠a and ↪.

The set $$𝑎𝑡𝑜 of atoms in CTSL is defined as follows:

 if $𝑜 is a sequence of Unicode symbols except for the whitespace symbols and the symbols ",

(,), {, }, ;, ,, and :, then $𝑜 ∈ $$𝑎𝑡𝑜;

 $$𝑠𝑎 ⊆ $$𝑎𝑡𝑜;

 if $𝑜 has the form "$𝑜1", $𝑜1 is a sequence of Unicode symbols, each occurrence of the symbol

" in $𝑜1 is preceded by the symbol \, and each occurrence of the symbol \ in $𝑜1 is doubled,

then $𝑜 ∈ $$𝑎𝑡𝑜. In this case, the atom $𝑜 is called a string.

The set $$𝑐𝑠 of conceptual structures in CTSL is defined as follows:

 $𝑎𝑡𝑜 ∈ $$𝑐𝑠;

 ($𝑐𝑠∗) ∈ $$𝑐𝑠;

 if the elements of $𝑐𝑠+ are pairwise distinct, and $cs ≠ 𝑢𝑛𝑑, then $𝑐𝑠: ($𝑐𝑠+) ∈ $$𝑠;

 if the elements of $𝑐𝑠+ are pairwise distinct, and $cs ≠ 𝑢𝑛𝑑, then ($𝑐𝑠+): : $𝑐𝑠 ∈ $$𝑐𝑠.

The whitespace symbols, comma (,) and the semicolon (;) are interchangeable in compound

structures in CTSL. For example, ($𝑐𝑠1, $𝑐𝑠2), ($𝑐𝑠1; $𝑐𝑠2) and ($𝑐𝑠1 $𝑐𝑠2) represent the same

conceptual structure.

System Informatics (Системная информатика), No. 9 (2017) 139

The bracket pairs (,) and {, } are interchangeable in compound structures in CTSL. For example,

($𝑐𝑠∗) and {$𝑐𝑠∗} represent the same compound conceptual structure.

5. The basic operations on conceptual structures

The conceptual structure access operation [$𝑐𝑠 . $𝑚𝑡] makes selection of elements of a compound

structure in accordance with their relative types. It is defined as follows:

 if $𝑐𝑠 = $𝑣: $𝑚𝑡1, and $𝑚𝑡 ⊆ $𝑚𝑡1, then [$𝑐𝑠 . $𝑚𝑡] = $𝑣;

 if $𝑐𝑠 ∈ $$𝑐𝑐𝑠, and there exists only one element $𝑐𝑠1 of $𝑐𝑠 such that $𝑐𝑠1 = $𝑣: $𝑚𝑡1, and

$𝑚𝑡 ⊆ $𝑚𝑡1, then [$𝑐𝑠 . $𝑚𝑡] = $𝑣;

 if $𝑐𝑠 ∈ $$𝑐𝑐𝑠, $𝑛 > 1, $𝑐𝑠1, …, $𝑐𝑠$𝑛 are (ordered from left to right) elements of $𝑐𝑠 such

that $𝑐𝑠$𝑛1 = $𝑣$𝑛1: $𝑚𝑡$𝑛1, and $𝑚𝑡 ⊆ $𝑚𝑡$𝑛1 for each 1 ≤ $𝑛1 ≤ $𝑛, then

[$𝑐𝑠 . $𝑚𝑡] = ($𝑣1 … $𝑣$𝑛): : (𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒);

 otherwise, [$𝑐𝑠 . $𝑚𝑡] = 𝑢𝑛𝑑.

An element $𝑣 is a value in ⟦$𝑚𝑡, $𝑐𝑠⟧ if $𝑣 = [$𝑐𝑠 . $𝑚𝑡]. The value of the form

$𝑚𝑣: : (𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒) is called a multi-value. Let [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 $𝑐𝑠] denote {$𝑚𝑡 | [$𝑐𝑠 . $𝑚𝑡] ≠ 𝑢𝑛𝑑}.

A structure $𝑡 is an (single-valued) attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 . ($𝑡)] does not have the absolute

type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. A structure $𝑡 is a multi-valued attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 . ($𝑡)] has the absolute

type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. Let $$𝑎𝑡𝑡 and $$𝑚𝑣𝑎𝑡𝑡 be sets of attributes and multi-valued attributes.

A structure $𝑐𝑠 is an (single-valued) attribute structure if $𝑡 is an attribute in ⟦$𝑐𝑠⟧ for each $𝑡 ∈

$$𝑐𝑠. A structure $𝑐𝑐𝑠 is a multi-valued attribute structure if $𝑡 is a multi-valued attribute in ⟦$𝑐𝑐𝑠⟧

for some $𝑡 ∈ $$𝑐𝑠. Let $$𝑎𝑠 and $$𝑚𝑣𝑎𝑠 be sets of attribute structures and multi-valued attribute

structures.

For example, the conceptual structure

(𝑥: {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒} 𝑖𝑛𝑡: {(𝑡𝑦𝑝𝑒 𝑥)} 3: {(𝑣𝑎𝑙𝑢𝑒 𝑥)} 𝑦: {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒} 𝑏𝑜𝑜𝑙: {(𝑡𝑦𝑝𝑒 𝑦)} 𝑡𝑟𝑢𝑒: {(𝑣𝑎𝑙𝑢𝑒 𝑦)})

defines the variables 𝑥 and 𝑦 by the multi-attribute 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, the types 𝑖𝑛𝑡 and 𝑏𝑜𝑜𝑙 of these variables

by the parametric attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎), where the values of the parameter $𝑣𝑎 are variables, and the

values 3 and 𝑡𝑟𝑢𝑒 of these variables by the parametric attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎).

A structure $𝑚𝑡 is a (single-valued) multi-attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 . $𝑚𝑡] does not have the

absolute type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. A structure $𝑚𝑡 is a multi-valued multi-attribute in ⟦$𝑐𝑠⟧ if [$𝑐𝑠 . $𝑚𝑡]

has the absolute type 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑙𝑢𝑒. Let $$𝑚𝑎𝑡𝑡 and $$𝑚𝑣𝑚𝑎𝑡𝑡 be sets of multi-attributes and multi-

valued multi-attributes.

A structure $𝑐𝑠 is an (single-valued) multi-attribute structure if $𝑚𝑡 is a multi-attribute in ⟦$𝑐𝑠⟧

for each $𝑚𝑡 ∈ {(𝑡+)|𝑡+ ∈ $$𝑐𝑠+}. A structure $𝑐𝑐𝑠 is a multi-valued multi-attribute structure if

140 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

$𝑚𝑡 is a multi-valued multi-attribute in ⟦$𝑐𝑐𝑠⟧ for some $𝑚𝑡 ∈ {(𝑡+)|𝑡+ ∈ $$𝑐𝑠+}. Let $$𝑚𝑎𝑠 and

$$𝑚𝑣𝑚𝑎𝑠 be sets of mult-attribute structures and multi-valued multi-attribute structures.

The conceptual structure update operation [$𝑐𝑠 . $𝑚𝑡 ≔ $𝑣] replaces all values in ⟦$𝑚𝑡, $𝑐𝑠⟧ in

$𝑐𝑠 by $𝑣 from left to right and deletes these values in case when $𝑣 = 𝑢𝑛𝑑. It is defined as follows

(the first proper rule is applied):

 if $mt is not a relative multi-type in ⟦($𝑐𝑠∗)⟧, and $𝑣 ≠ 𝑢𝑛𝑑, then

[($𝑐𝑠∗) . $𝑚𝑡 ≔ $𝑣] = ($𝑐𝑠∗ $𝑣: $𝑚𝑡);

 if $mt is not a relative multi-type in ⟦$𝑐𝑠⟧, and $𝑣 ≠ 𝑢𝑛𝑑, then

[$𝑐𝑠 . $𝑚𝑡 ≔ $𝑣] = ($𝑐𝑠 $𝑣: $𝑚𝑡);

 if $𝑚𝑡 ⊑ $𝑚𝑡1, and $𝑣 ≠ 𝑢𝑛𝑑, then [$𝑣1: $𝑚𝑡1 . $𝑚𝑡 ≔ $𝑣] = $𝑣: $𝑚𝑡1;

 if $𝑚𝑡 ⊑ $𝑚𝑡1, then [$𝑣1: $𝑚𝑡1 . $𝑚𝑡 ≔ 𝑢𝑛𝑑] = 𝑢𝑛𝑑;

 [($𝑐𝑠∗) . $𝑚𝑡 ≔ $𝑣] = ([$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣]);

 [$𝑐𝑠 . $𝑚𝑡 ≔ $𝑣] = $𝑐𝑠.

The conceptual structure update operation [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] is defined as follows (the

first proper rule is applied):

 if $𝑚𝑡 ⊑ $𝑚𝑡1, and $𝑣 ≠ 𝑢𝑛𝑑, then

[$𝑣1: $𝑚𝑡1 $𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] = $𝑣: $𝑚𝑡1 [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣];

 if $𝑚𝑡 ⊑ $𝑚𝑡1, then

[$𝑣1: $𝑚𝑡1 $𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ 𝑢𝑛𝑑] = [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ 𝑢𝑛𝑑];

 [$𝑐𝑠 $𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] = $𝑐𝑠 [$𝑐𝑠∗ . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣];

 [[𝑒𝑠] . : : {𝑠𝑒𝑞} $𝑚𝑡 ≔ $𝑣] = [𝑒𝑠].

The conceptual structure update operation [$𝑐𝑠 . $𝑚𝑡1 ≔ $𝑣1 … $𝑚𝑡$𝑛 ≔ $𝑣$𝑛] is defined as

follows:

 [$𝑐𝑠 . $𝑚𝑡 ≔ $𝑣 $𝑠𝑒] = [[$𝑐𝑠 . $𝑚𝑡 ≔ $𝑣] $𝑠𝑒];

 [$𝑐𝑠 . [𝑒𝑠]] = $𝑐𝑠.

The conceptual structure update operation [$𝑐𝑠 . $𝑚𝑡 ≔] is a shortcut for [$𝑐𝑠 . $𝑚𝑡 ≔ 𝑢𝑛𝑑].

6. The properties of conceptual transition systems

An element $𝑡𝑟𝑎 of the form ($𝑠1, $𝑠2) is called a transition. The states $𝑠1 and $𝑠2 are called

input and output states in ⟦𝑡𝑟𝑎⟧. Let $$𝑡𝑟𝑎 be a set of transitions.

A state $𝑠1 is final if there is no $𝑠2 such that $𝑠1 ↪ $𝑠2. Let $$𝑓𝑠 be a set of final states in

⟦$𝑐𝑡𝑠⟧. A system $𝑐𝑡𝑠 stops in ⟦$𝑠⟧ if $𝑠 is final.

System Informatics (Системная информатика), No. 9 (2017) 141

A state $𝑠 is reachable if there exist $𝑛 > 0, $𝑠1 , …, $𝑠$𝑛 such that $𝑠1 ∈ $𝑖𝑠, $𝑠$𝑛1 ↪

$𝑠[$𝑛1 + 1] for each 1 ≤ $𝑛1 < $𝑛, and $𝑠 = $𝑠$𝑛. Let $$𝑟𝑠 be a set of reachable states in ⟦$𝑐𝑡𝑠⟧.

An element $t is an attribute in ⟦$𝑐𝑡𝑠⟧ if $t is an attribute in ⟦$𝑠⟧ for each $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧. An

element $t is a multi-valued attribute in ⟦$𝑐𝑡𝑠⟧ if there exists $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧ such that $t is a multi-

valued attribute in ⟦$𝑠⟧. An element $mt is a multi-attribute in ⟦$𝑐𝑡𝑠⟧ if $mt is a multi-attribute in

⟦$𝑠⟧ for each $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧. An element $mt is a multi-valued multi-attribute in ⟦$𝑐𝑡𝑠⟧ if there

exists $𝑠 ∈ $$𝑟𝑠⟦$𝑐𝑡𝑠⟧ such that $mt is a multi-valued multi-attribute in ⟦$𝑠⟧.

A system $𝑐𝑡𝑠 is a CTS with return values if 𝑣𝑎𝑙𝑢𝑒 is an attribute in ⟦$𝑐𝑡𝑠⟧. An element $𝑣 is a

value in ⟦$𝑠⟧ if $𝑣 = [$𝑠 . {𝑣𝑎𝑙𝑢𝑒}]. An element $𝑣 is a value in ⟦𝑡𝑟𝑎⟧ if [$𝑡𝑟𝑎 . . 1] ↪ [$𝑡𝑟𝑎 . . 2],

and $𝑣 is a value in ⟦[$𝑡𝑟𝑎 . . 2]⟧. A transition $𝑡𝑟𝑎 returns a value $𝑣 if $𝑣 is a value in ⟦$𝑡𝑟𝑎⟧. An

element $𝑣 is undefined if $𝑣 = 𝑢𝑛𝑑. The set $$𝑣 of (possible) values is defined as follows: $$𝑣 =

$$𝑒.

A system $𝑐𝑡𝑠 with return values can return exceptions. A value $𝑣 is an exception (an exceptional

value) if $𝑣 has the absolute type 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛. Thus, exceptions are specified by the absolute type

𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛. Let 𝑒𝑥𝑐 be a shortcut for 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛. Let $$𝑒𝑥 be a set of exceptions. An element $𝑡 is

called a type in ⟦$𝑒𝑥⟧ if $𝑡 = [$𝑣 . {𝑡𝑦𝑝𝑒}], where $𝑣 is a value in ⟦$𝑒𝑥⟧.

A value $𝑣 is abnormal if $𝑣 is undefined, or $𝑣 is an exception. Let $$𝑎𝑣 be a set of abnormal

values. A value $𝑣 is normal if $𝑣 ∉ $$𝑎𝑣. Let $$𝑛𝑣 be a set of normal values. A transition $𝑡𝑟𝑎

returns (generates) an exception $𝑒𝑥 if $𝑒𝑥 is a value in ⟦$𝑡𝑟𝑎⟧. A transition $𝑡𝑟𝑎 is normally

executed if $𝑡𝑟𝑎 does not return exceptions.

A system $𝑐𝑡𝑠 is a CTS with programs if 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 is an attribute in ⟦$𝑐𝑡𝑠⟧, and the value of this

attribute is a compound structure. A compound structure $𝑝 is a program in ⟦$𝑠⟧ if

$𝑝 = [$𝑠 . {𝑝𝑟𝑜𝑔𝑟𝑎𝑚}]. Let $$𝑝 be a set of programs. A program in ⟦$𝑠⟧ is empty if

[$𝑠 . {𝑝𝑟𝑜𝑔𝑟𝑎𝑚}] = (). A program in ⟦$𝑠⟧ initiates transitions from $𝑠.

The elements that initiate transitions are called executable elements. Let $$𝑒𝑒 be a set of

executable elements. A program $p is an executable element, and the elements of ⟦$𝑝⟧ are executable

elements.

A system $𝑐𝑡𝑠 is a CTS with direct stop if 𝑠𝑡𝑜𝑝 is an attribute in ⟦$𝑐𝑡𝑠⟧, and $𝑠 is final for each

$𝑠 such that [$𝑠 . {𝑠𝑡𝑜𝑝}] ≠ 𝑢𝑛𝑑. A state $s is a stop state if [$𝑠 . {𝑠𝑡𝑜𝑝}] ≠ 𝑢𝑛𝑑. The value of

the attribute 𝑠𝑡𝑜𝑝 specifies why the system $𝑐𝑡𝑠 stopped.

An attribute $𝑏𝑖 in ⟦$𝑠⟧ is a backtracking invariant in ⟦$𝑠⟧ if

[$𝑠 . {((𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) $𝑏𝑖)}] ≠ 𝑢𝑛𝑑. An attribute $𝑏𝑖 is a backtracking invariant in

142 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

⟦$𝑐𝑡𝑠⟧ if $𝑏𝑖 is a backtracking invariant in ⟦$𝑠⟧ for some $𝑠 ∈ $$𝑟𝑠⟦↪ ⟦$𝑐𝑡𝑠⟧⟧. Backtracking

invariants preserves their values after backtracking. Let $$𝑏𝑖 be a set of backtracking invariants.

Let [(𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠) $𝑠1 $𝑠2] denote the state $𝑠 such that

[$𝑠 . {$𝑎𝑡𝑡}] = [$𝑠1 . {$𝑎𝑡𝑡}] for each $𝑎𝑡𝑡 ∈ $$𝑏𝑖⟦$𝑠2⟧, and [$𝑠 . {$𝑎𝑡𝑡}] = [$𝑠2 . {$𝑎𝑡𝑡}] for

each $𝑎𝑡𝑡 ∉ $$𝑏𝑖⟦$𝑠2⟧.

Let $𝑒∗ # $𝑣 # $𝑠 and $𝑒∗ # $𝑠 denote [$𝑠 . {𝑝𝑟𝑜𝑔𝑟𝑎𝑚} : = ($𝑒∗), {𝑣𝑎𝑙𝑢𝑒} : = $𝑣] and

[$𝑠 . {𝑝𝑟𝑜𝑔𝑟𝑎𝑚} : = ($𝑒∗)].

A system $𝑐𝑡𝑠 is a CTS with backtracking in ⟦$$𝑏𝑖⟧ if $𝑐𝑡𝑠 is a CTS with return values with

programs, ((𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡) $𝑏𝑖) is a parametric attribute in ⟦$𝑐𝑡𝑠⟧, $𝑏𝑖 is a backtracking

invariant in ⟦$𝑐𝑡𝑠⟧ for each $𝑏𝑖 ∈ $$𝑏𝑖, and ↪ ⟦$𝑐𝑡𝑠⟧ satisfies the following properties:

 if $𝑣⟦$𝑠⟧ ≠ 𝑢𝑛𝑑, then (𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 $𝑠1 $𝑒∗1) $𝑒∗ # $𝑠 ↪ $𝑒∗ # $𝑠;

 if $𝑣⟦$𝑠⟧ = 𝑢𝑛𝑑, then

 (𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 $𝑠1 $𝑒∗1) $𝑒∗ # $𝑠 ↪

 $𝑒∗1 $𝑒∗ # [(𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠) $𝑠1 $𝑠].

The element $𝑒 of the form (𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 $𝑠 $𝑒∗) is called a backtracking point. The objects $𝑠

and $𝑒∗ are called a state and a program prefix in ⟦$𝑒⟧.

7. Examples of conceptual models of programming languages

Let $$𝑙 be a set of programming languages. Let [𝑎𝑚 $𝑙] denotes an abstract machine executing

the constructs of $𝑙. A tuple ($$𝑡, $$𝑣, $$𝑒𝑥, $$𝑠, $$𝑐, $$𝑎𝑥) is a conceptual model of $𝑙 in CTSL

if $$𝑡⟦$𝑙⟧ is a set of elements in CTSL representing the types of $𝑙, $$𝑣⟦$𝑙⟧ is a set of elements in

CTSL representing the values in [𝑎𝑚 $𝑙] (in particular, the values of the types of $𝑙), $$ex⟦$𝑙⟧ is a

set of exceptions in CTSL representing the exceptions in [𝑎𝑚 $𝑙], $$ex⟦$𝑙⟧ ⊑ $$𝑣⟦$𝑙⟧, $$𝑠⟦$𝑙⟧ is a

set of states in CTSL representing the states of [𝑎𝑚 $𝑙], $$𝑐⟦$𝑙⟧ is a set of executable elements in

CTSL representing the executable constructs of [𝑎𝑚 $𝑙] (in particular, the elements of programs in

$𝑙), and $$𝑎𝑥 is a set of axioms representing the constraints for the conceptual model of $𝑙 (the other

elements of the tuple).

Let [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] denote the set of values in ⟦$𝑡⟧. The set [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] is called the content in

⟦$𝑡⟧. The fact that $$𝑡 and $𝑡 depend on $𝑠 is denoted by $$𝑡⟦$𝑠⟧ and $𝑡⟦$𝑠⟧.

Let Axiom: $𝑎𝑥 denote that $𝑎𝑥 is an axiom of the conceptual model of $𝑙.

The family of model programming languages (MPLs) is described and their conceptual models

are defined in this section.

System Informatics (Системная информатика), No. 9 (2017) 143

7.1. MPL1: types, typed variables and basic statement

The MPL1 language is an extension of CTSL that adds types, typed variables, the variable access

operation, and the basic statements such as variable declarations, variable assignments, if statements,

while statements and block statements.

7.1.1. Types, values, states

For MPL1, $$𝑡⟦MPL1⟧ = {𝑖𝑛𝑡, 𝑛𝑎𝑡}, $$𝑣⟦MPL1⟧ = $$𝑖 ∪ $$𝑛, and $$𝑒𝑥⟦MPL1⟧ = ∅, where

[𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛𝑡] = $$𝑖, and [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑛𝑎𝑡] = $$𝑛.

 An element $𝑒 is a name if $𝑒 is normal. Let $$𝑛𝑎 be a set of names.

 The attribute (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎) specifies variables in MPL1. A name $𝑛𝑎 is a variable in ⟦$𝑠⟧ if

[$𝑠 . {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑣𝑎 be a set of variables.

 The attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎) specifies the type of the variable $𝑣𝑎. A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠⟧

if [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎)}] = $𝑡.

Axiom: If [$𝑠 . {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑣𝑎)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎)}] ∈ $$𝑡⟦$𝑠⟧.

The attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎) specifies the value of the variable $𝑣𝑎. A value $𝑣 is a value in

⟦$𝑣𝑎, $𝑠⟧ if [$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎)}] = $𝑣.

Axiom: If [$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎)}] = $𝑡, and

[$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡 ∈ $$𝑡⟦$𝑠⟧.

7.1.2. Constructs

The MPL1 program is represented by the element (𝑝𝑟𝑜𝑔𝑟𝑎𝑚 $𝑛𝑎 $𝑐∗). It specifies a program

with the name $𝑛𝑎 and the body $𝑐∗.

The variable declaration is represented by the element (𝑣𝑎𝑟 $𝑣𝑎 $𝑡). It declares the variable $𝑣𝑎

of the type $𝑡.

Axiom: Variable declarations are elements of the program body.

The variable access operation is represented by $𝑣𝑎. It returns the value of the variable $𝑣𝑎.

The variable assignment is represented by the element ($𝑣𝑎 \≔ $𝑐). If $𝑣 is a value of $𝑐, then

it assigns $𝑣 to the variable $𝑣𝑎.

The block statement is represented by the element (𝑏𝑙𝑜𝑐𝑘 $𝑐∗). It specifies the block statement

with the body $𝑐∗.

The if statement is represented by the element (\𝑖𝑓 $𝑐 𝑡h𝑒𝑛 $𝑐∗1 𝑒𝑙𝑠𝑒 $𝑐∗2). It specifies the if

statement with the condition $𝑐, the then-branch $𝑐∗1 and the else-branch $𝑐∗2. The element

(\𝑖𝑓 $𝑐 𝑡h𝑒𝑛 $𝑐∗1) is a shortcut for (\𝑖𝑓 $𝑐 𝑡h𝑒𝑛 $𝑐∗1 𝑒𝑙𝑠𝑒).

144 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

The while statement is represented by the element (\𝑤h𝑖𝑙𝑒 $𝑐 𝑑𝑜 $𝑐∗). It specifies the while

statement with the condition $𝑐 and the body $𝑐∗.

7.2. MPL2: variable scopes

The MPL2 language is an extension of MPL1 that adds the variable scopes feature.

The relative scope of the variable $𝑣𝑎 occuring in the element $𝑐 is the number of blocks

surrounding this occurrence of $𝑣𝑎 in $𝑐. The value and type of $𝑣𝑎 depend on its scope. The variable

$𝑣𝑎 can be global (with the scope 0) and local. The following example illustrates variable scopes:

(𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑠𝑐𝑜𝑝𝑒𝑠 // 𝑥 = 𝑢𝑛𝑑, 𝑦 = 𝑢𝑛𝑑, 𝑠𝑐𝑜𝑝𝑒 = 0

 (𝑣𝑎𝑟 𝑥 𝑖𝑛𝑡) // 𝑥 = 𝑢𝑛𝑑, 𝑦 = 𝑢𝑛𝑑, 𝑠𝑐𝑜𝑝𝑒 = 0

 (𝑥 : = 0) // 𝑥 = 0, 𝑦 = 𝑢𝑛𝑑, 𝑠𝑐𝑜𝑝𝑒 = 0

 (𝑣𝑎𝑟 𝑦 𝑏𝑜𝑜𝑙) // 𝑥 = 0, 𝑦 = 𝑢𝑛𝑑, 𝑠𝑐𝑜𝑝𝑒 = 0

 (𝑦 : = 𝑡𝑟𝑢𝑒) // 𝑥 = 0, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 0

 (𝑏𝑙𝑜𝑐𝑘 // 𝑥 = 0, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 1

 (𝑣𝑎𝑟 𝑥 𝑏𝑜𝑜𝑙) // 𝑥 = 𝑢𝑛𝑑, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 1

 (𝑥 : = 𝑓𝑎𝑙𝑠𝑒) // 𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 1

 (𝑏𝑙𝑜𝑐𝑘 // 𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 2

 (𝑣𝑎𝑟 𝑥 𝑖𝑛𝑡) // 𝑥 = 𝑢𝑛𝑑, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 2

 (𝑥 : = 2) // 𝑥 = 2, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 2

) // 𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 1

 (𝑣𝑎𝑟 𝑦 𝑖𝑛𝑡) // 𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑢𝑛𝑑, 𝑠𝑐𝑜𝑝𝑒 = 1

 (𝑦 : = 1) // 𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 1, 𝑠𝑐𝑜𝑝𝑒 = 1

) // 𝑥 = 0, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑠𝑐𝑜𝑝𝑒 = 0

).

7.2.1. Types, values, states

For MPL2, $$𝑡⟦MPL2⟧ = $$𝑡⟦MPL1⟧, $$𝑣⟦MPL2⟧ = $$𝑣⟦MPL1⟧, and $$𝑒𝑥⟦MPL2⟧ = ∅.

Let $$𝑠𝑐 be a set of (relative) variable scopes.

The attribute (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐) specifies variables in ⟦$𝑠𝑐⟧. A name $𝑛𝑎 is a variable in

⟦$𝑠, $𝑠𝑐⟧ if [$𝑠 . {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐)}] ≠ 𝑢𝑛𝑑.

A variable $𝑣𝑎⟦$𝑠, $𝑠𝑐⟧ is global if $𝑠𝑐 = 0. A variable $𝑣𝑎⟦$𝑠, $𝑠𝑐⟧ is local if $𝑠𝑐 > 0.

The attribute (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒) specifies the scope of the current block. A scope $𝑠𝑐 is a current

scope in ⟦$𝑠⟧ if [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}] = $𝑠𝑐. A name $𝑛𝑎 is a variable in ⟦$𝑠⟧ if $𝑛𝑎 is a variable

in ⟦$𝑠, $𝑠𝑐⟧ for some 0 ≤ $𝑠𝑐 ≤ [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. A scope $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠⟧ if

System Informatics (Системная информатика), No. 9 (2017) 145

$𝑣𝑎 is a variable in ⟦$𝑠, $𝑠𝑐⟧, 0 ≤ $𝑠𝑐 ≤ [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}], and $𝑣𝑎 is not a variable in

⟦$𝑠, $𝑠𝑐1⟧ for each $𝑠𝑐 < $𝑠𝑐1 ≤ [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}].

The attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐) specifies the type of the variable $va in ⟦$𝑠𝑐⟧. A type $𝑡 is a type in

⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧ if [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑡. A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠⟧ if $𝑡 is a type in

⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠⟧.

Axiom: If [$𝑠 . {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑣𝑎 $𝑠𝑐)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐)}] ∈ $$𝑡⟦$𝑠⟧.

The attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐) specifies the value of the variable $𝑣𝑎 in ⟦$𝑠𝑐⟧. A value $𝑣 is a

value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧ if [$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑣. A value $𝑣 is a value in ⟦$𝑣𝑎, $𝑠⟧ if $𝑣 is

a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠⟧.

Axiom: If [$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑡, and

[$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡 ∈ $$𝑡⟦$𝑠⟧.

 7.2.2. Constructs

For MPL2, $$𝑐⟦MPL2⟧ = $$𝑐⟦MPL1⟧.

Axiom: Variable declarations are elements of the program body or of block bodies.

7.3. MPL3: functions

The MPL3 language is an extension of MPL2 that adds the functions feature: declarations and

calls of functions, and the return statement.

Axiom: Function overloading is prohibited.

7.3.1. Types, values, states

The exception (𝑟𝑒𝑡𝑢𝑟𝑛: {𝑡𝑦𝑝𝑒}, 𝑣: {𝑣𝑎𝑙𝑢𝑒}): : {𝑒𝑥𝑐} specifies the execution of the return

statement with the return value 𝑣. Let $$𝑒𝑥1 be a set of such exceptions.

For MPL2, $$𝑡⟦MPL3⟧ = $$𝑡⟦MPL2⟧, $$𝑣⟦MPL3⟧ = $$𝑣⟦MPL2⟧ ∪ $$𝑒𝑥⟦MPL3⟧, and

$$𝑒𝑥⟦𝑀𝑃𝐿3⟧ = $$𝑒𝑥1.

The attribute (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 $𝑛𝑎) specifies functions. A name $𝑛𝑎 is a function in ⟦$𝑠⟧ if

[$𝑠 . {(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑓 be a set of functions.

The attribute (𝑎𝑟𝑖𝑡𝑦 $𝑓) specifies the arity of the function $𝑓. A number $𝑛 is an arity in

⟦$𝑓, $𝑠⟧ if [$𝑠 . {(𝑎𝑟𝑖𝑡𝑦 $𝑓)}] = $𝑛.

The attribute (𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑓 $𝑛) specifies the $𝑛-th argument of the function $𝑓. A name $𝑛𝑎 is

an argument in ⟦$𝑓, $𝑛⟧ if [$𝑠 . {(𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑓 $𝑛)}] = $𝑛𝑎, and 1 ≤ $𝑛 ≤ [$𝑠 . {(𝑎𝑟𝑖𝑡𝑦 $𝑓)}].

Let $$𝑎 be a set of arguments.

146 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

The attribute ((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑓 $𝑛) specifies the type of the $𝑛-th argument of the function

$𝑓. A type $𝑡 is a type in ⟦$𝑓, $𝑛⟧ if [$𝑠 . {((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒)} $𝑓 $𝑛)] ≠ 𝑢𝑛𝑑, and 1 ≤ $𝑛 ≤

[$𝑠 . {(𝑎𝑟𝑖𝑡𝑦 $𝑓)}].

The attribute ((𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒) $𝑓) specifies the return type of the function $𝑓. A type $𝑡 is a return

type in ⟦$𝑓⟧ if [$𝑠 . {((𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒)$𝑓)}] = $𝑡.

The attribute (𝑏𝑜𝑑𝑦 $𝑓) specifies the body of the function $𝑓. A sequence $𝑐∗ is a body in ⟦$𝑓⟧ if

[$𝑠 . {(𝑏𝑜𝑑𝑦 $𝑓)}] = ($𝑐∗).

A call level is a number of embedded function calls. Let $$𝑐𝑙 be a set of call levels. The attribute

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙) specifies the current call level. A level $𝑐𝑙 is a current call level in ⟦$𝑠⟧ if $𝑐𝑙 =

[$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙)}].

The (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒) specifies the return type in the current function call. A type $𝑡 is a

current return type in ⟦$𝑠⟧ if [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒)}] = $𝑡.

The attribute (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙) specifies variables in ⟦$𝑠𝑐, $𝑐𝑙⟧. A name $𝑛𝑎 is a variable

in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 . {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, and $𝑠𝑐 = 0 implies $𝑐𝑙 = 0.

A variable $𝑣𝑎⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ is global if $𝑠𝑐 = 0, and $𝑐𝑙 = 0. A variable $𝑣𝑎⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ is

local if $𝑠𝑐 > 0, and $𝑐𝑙 > 0.

A name $𝑛𝑎 is a variable in ⟦$𝑠, $𝑐𝑙⟧ if $𝑛𝑎 is a variable in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ for some 0 ≤ $𝑠𝑐 ≤

[$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. A scope $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧ if $𝑣𝑎 is a variable in

⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧, 0 ≤ $𝑠𝑐 ≤ [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}], and $𝑣𝑎 is not a variable in ⟦$𝑠, $𝑠𝑐1, $𝑐𝑙⟧ for

each $𝑠𝑐 < $𝑠𝑐1 ≤ [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}].

The attribute (𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙) specifies the type of the variable $𝑣𝑎 in ⟦$𝑠𝑐, $𝑐𝑙⟧. A type $𝑡 is

a type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] = $𝑡.

Axiom: If [$𝑠 . {(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ∈ $$𝑡⟦$𝑠⟧.

A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧ if $𝑡 is a type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧, and $𝑠𝑐 is a scope in

⟦$𝑣𝑎, $𝑐𝑙⟧ for some 0 ≤ $𝑠𝑐 ≤ [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}]. A type $𝑡 is a type in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧ if $𝑡

is a type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧.

The attribute (𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙) specifies the value of the variable $𝑣𝑎 in ⟦$𝑠𝑐, $𝑐𝑙⟧. A value

$𝑣 is a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐⟧ if [$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐)}] = $𝑣. A value $𝑣 is a value in

⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧ if $𝑣 is a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧, where $𝑠𝑐 is a scope in ⟦$𝑣𝑎, $𝑠, $𝑐𝑙⟧.

Axiom: If [$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] = $𝑡, and

[$𝑠 . {(𝑣𝑎𝑙𝑢𝑒 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡 ∈ $$𝑡⟦$𝑠⟧.

System Informatics (Системная информатика), No. 9 (2017) 147

7.3.2. Constructs

An object $𝑜 is a typed name if $𝑜 = $𝑛𝑎 $𝑡. Let $$𝑡𝑛𝑎 be a set of typed names.

The function declaration is represented by the element (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 $𝑓 ($𝑡𝑛𝑎1 … $𝑡𝑛𝑎$𝑛) $𝑡 $𝑐∗).

It specifies the declaration of the function $𝑓, the arguments $𝑛𝑎⟦$𝑡𝑛𝑎1⟧, ..., $𝑛𝑎⟦$𝑡𝑛𝑎$𝑛⟧ of the

types $𝑡⟦$𝑡𝑛𝑎1⟧, ..., $𝑡⟦$𝑡𝑛𝑎$𝑛⟧, the return type $𝑡, and the body $𝑐∗.

Axiom: Function declarations are elements of the program body.

The return statement is represented by the element (𝑟𝑒𝑡𝑢𝑟𝑛 $𝑐). It specifies the return statement

with the return element $𝑐. If $𝑣 is a value of $𝑐, then it returns $𝑣.

The function call is represented by the element (𝑐𝑎𝑙𝑙 $𝑓 $𝑐∗). It specifies the call of the function

$𝑓 with the arguments $𝑐∗.

7.4. MPL4: procedures

The MPL4 language is an extension of MPL3 that adds the procedures feature: declarations and

calls of procedures, and the exit statement.

Axiom: Procedure overloading is prohibited.

Axiom: The sets of function names and procedure names are disjoint.

7.4.1. Types, values, states

The exception (𝑒𝑥𝑖𝑡: {𝑡𝑦𝑝𝑒}): : {𝑒𝑥𝑐} specifies the execution of the exit statement. Let $$𝑒𝑥1 be

a set of such exceptions.

For MPL4, $$𝑡⟦MPL4⟧ = $$𝑡⟦MPL3⟧, $$𝑣⟦MPL4⟧ = $$𝑣⟦MPL3⟧ ∪ $$𝑒𝑥⟦MPL4⟧, and

$$𝑒𝑥⟦𝑀𝑃𝐿4⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿3⟧ ∪ $$𝑒𝑥1.

The attribute (𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 $𝑛𝑎) specifies procedures. A name $𝑛𝑎 is a procedure in ⟦$𝑠⟧ if

[$𝑠 . {(𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑝𝑟 be a set of procedures.

The attribute (𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟) specifies the arity of the procedure $𝑝𝑟. A number $𝑛 is an arity in

⟦$𝑝𝑟, $𝑠⟧ if [$𝑠 . {(𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟)}] = $𝑛.

The attribute (𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑝𝑟 $𝑛) specifies the $𝑛-th argument of the procedure $𝑝𝑟. A name

$𝑛𝑎 is an argument in ⟦$𝑝𝑟, $𝑛⟧ if [$𝑠 . {(𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 $𝑝𝑟 $𝑛)}] = $𝑛𝑎, and 1 ≤ $𝑛 ≤

[$𝑠 . {(𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟)}].

The attribute ((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑡 $𝑝𝑟 $𝑛) specifies the type of the $𝑛-th argument of the

procedure $𝑝𝑟. A type $𝑡 is a type in ⟦$𝑝𝑟, $𝑛⟧ if [$𝑠 . {((𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑡 $𝑝𝑟 $𝑛)}] ≠ 𝑢𝑛𝑑,

and 1 ≤ $𝑛 ≤ [$𝑠 . {(𝑎𝑟𝑖𝑡𝑦 $𝑝𝑟)}].

The attribute (𝑏𝑜𝑑𝑦 $𝑝𝑟) specifies the body of the procedure $𝑝𝑟. A sequence $𝑐∗ is a body in

⟦$𝑝𝑟⟧ if [$𝑠 . {(𝑏𝑜𝑑𝑦 $𝑝𝑟)}] = ($𝑐∗).

148 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

A call level is redefined in MPL4 as a number of embedded function and procedure calls.

7.4.2. Constructs

The procedure declaration is represented by the element

(𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 $𝑝𝑟 ($𝑡𝑛𝑎1 … $𝑡𝑛𝑎$𝑛) $𝑐∗). It specifies the declaration of the procedure $𝑝𝑟, the

arguments $𝑛𝑎⟦$𝑡𝑛𝑎1⟧, ..., $𝑛𝑎⟦$𝑡𝑛𝑎$𝑛⟧ of the types $𝑡⟦$𝑡𝑛𝑎1⟧, ..., $𝑡⟦$𝑡𝑛𝑎$𝑛⟧, and the body $𝑐∗.

Axiom: Procedure declarations are elements of the program body.

The exit statement is represented by the element 𝑒𝑥𝑖𝑡.

The procedure call is represented by the element (𝑐𝑎𝑙𝑙 $𝑝𝑟 $𝑐∗). It specifies the call of the

procedure $𝑝𝑟 with the arguments $𝑐∗.

7.5. MPL5: pointers

The MPL5 language is an extension of MPL4 that adds the pointers feature: the pointer types, the

operations of pointer content access, variable address access and pointer deletion, statements of

pointer content assignment and pointer deletion.

7.5.1. Types, values, states

An element (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) is called a pointer type in ⟦$𝑡⟧. An element $𝑒 is a pointer type if $𝑒 is

a pointer type in ⟦$𝑡⟧ for some $𝑡. Let $$𝑝𝑡 be a set of pointer types.

The absolute type 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 specifies pointers in MPL5. An element $𝑒 ∈ $$𝑎𝑡𝑠 is a pointer if $𝑒

has the absolute type 𝑝𝑜𝑖𝑛𝑡𝑒𝑟, and the value in ⟦$𝑒⟧ belongs to $$𝑛. Thus, pointers are represented

in MPL5 by natural numbers categorized by the type 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. Let $$𝑝𝑜 be a set of pointers.

For MPL5, $$𝑡⟦𝑀𝑃𝐿5⟧ = $$𝑡⟦𝑀𝑃𝐿4⟧ ∪ $$𝑝𝑡, $$𝑣⟦MPL5⟧ = $$𝑣⟦MPL4⟧ ∪ $$𝑝𝑜, and

$$𝑒𝑥⟦𝑀𝑃𝐿5⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿4⟧.

The attribute (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑝𝑜) specifies pointers in states. A pointer $𝑝𝑜 is a pointer in ⟦$𝑠⟧ if

[$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑝𝑜)}] ≠ 𝑢𝑛𝑑.

The attribute ((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑝𝑜) specifies the content type of the pointer $𝑝𝑜. A type $𝑡 is a

content type in ⟦$𝑝𝑜, $𝑠⟧ if [$𝑠 . {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒)$𝑝𝑜)}] = $𝑡. It specifies the type of the content

to which the pointer $𝑝𝑜 refers.

Axiom: If [$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑝𝑜)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑝𝑜)}] ∈ $$𝑡⟦$𝑠⟧.

The pointer $𝑝𝑜 has the type (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) in ⟦$𝑠⟧ if $𝑡 is a content type in ⟦$𝑝𝑜, $𝑠⟧. Thus, the

type (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) specifies pointers with the content type $𝑡.

The attribute (𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜) specifies the content of the pointer $𝑝𝑜. A value $𝑣 is a content in

⟦$𝑝𝑜, $𝑠⟧ if [$𝑠 . {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜)}] = $𝑣.

System Informatics (Системная информатика), No. 9 (2017) 149

Axiom: If [$𝑠 . {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) $𝑝𝑜)}] = $𝑡, and

[$𝑠 . {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑝𝑜)}] ∈ [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡] for some $𝑡⟦$𝑠⟧.

The attribute (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙) specifies variables in ⟦$𝑠𝑐, $𝑐𝑙⟧ by the pointers referring to

their values. A name $𝑛𝑎 is a variable in ⟦$𝑝, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙)}] = $𝑝.

A variable $𝑣𝑎 represents $𝑝 in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ if $𝑣𝑎 is a variable in ⟦$𝑝, $𝑠, $𝑠𝑐, $𝑐𝑙⟧. A name $𝑛𝑎

is a variable in ⟦$𝑠, $𝑠𝑐, $𝑐𝑙⟧ if $𝑛𝑎 is a variable in ⟦$𝑝, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ for some $𝑝 ∈ $$𝑝⟦$𝑠⟧. A

pointer $𝑝 is a pointer in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if $𝑣𝑎 is a variable in ⟦$𝑝, $𝑠, $𝑠𝑐, $𝑐𝑙⟧.

The content of the pointer $𝑝⟦$𝑣𝑎⟧ coincides with the value of the variable $𝑣𝑎. A type $𝑡 is a

type in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 . {((𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑡𝑦𝑝𝑒) [$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑛𝑎 $𝑠𝑐 $𝑐𝑙)}])}] = $𝑡. A

value $𝑣 is a value in ⟦$𝑣𝑎, $𝑠, $𝑠𝑐, $𝑐𝑙⟧ if [$𝑠 . {(𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}])}] = $𝑣.

Axiom: If [$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ≠ 𝑢𝑛𝑑, then [$𝑠 . {(𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑣𝑎 $𝑠𝑐 $𝑐𝑙)}] ∈

$$𝑝𝑜⟦$𝑠⟧.

7.5.2. Constructs

Pointers are represented by elements of $$𝑝𝑜.

The pointer content access operation is represented by the element (∗ $𝑐). If $𝑝𝑜 is a value of $𝑐,

then it returns the content in ⟦$𝑝𝑜⟧.

The variable address access operation is represented by the element (& 𝑣𝑎). It returns the pointer

in ⟦$𝑠, $𝑣𝑎, [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑐𝑜𝑝𝑒)}], [$𝑠 . {(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑙𝑒𝑣𝑒𝑙)}]⟧.

The pointer addition operation is represented by the element (𝑛𝑒𝑤 $𝑝𝑡). It adds a new pointer of

the type $𝑝𝑡.

The pointer content assignment statement is represented by the element (∗ $𝑐1 : = $𝑐2). If $𝑝𝑜

and $𝑣 are the values of $𝑐1 and $𝑐2, and they have the types (𝑝𝑜𝑖𝑛𝑡𝑒𝑟 $𝑡) and $𝑡 for some $𝑡, then

it assigns $𝑣 to the content of $𝑝𝑜.

The pointer deletion operation is represented by the element (𝑑𝑒𝑙𝑒𝑡𝑒 $𝑐). If $𝑝𝑜 is a value of $𝑐,

then it specifies the deletion of the pointer $𝑝𝑜.

7.6. MPL6: jump statements

The MPL6 language is an extension of MPL5 that adds the jump statements feature: break

statement, continue statement, goto statement and labelled statement.

7.6.1. Types, values, states

The exception (𝑏𝑟𝑒𝑎𝑘: {𝑡𝑦𝑝𝑒}): : {𝑒𝑥𝑐} specifies the execution of the break statement.

The exception (𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒: {𝑡𝑦𝑝𝑒}): : {𝑒𝑥𝑐} specifies the execution of the continue statement.

150 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

The exception (𝑔𝑜𝑡𝑜: {𝑡𝑦𝑝𝑒}, $𝑙: {𝑙𝑎𝑏𝑒𝑙}): : {𝑒𝑥𝑐} specifies the execution of the goto statement

with the label $𝑙.

Let $$𝑒𝑥1 be a set of such exceptions.

For MPL6, $$𝑡⟦MPL6⟧ = $$𝑡⟦MPL5⟧, $$𝑣⟦MPL6⟧ = $$𝑣⟦MPL5⟧ ∪ $$𝑒𝑥⟦MPL6⟧, and

$$𝑒𝑥⟦𝑀𝑃𝐿6⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿5⟧ ∪ $$𝑒𝑥1.

An element $𝑙 is a label if $𝑙 is a name. Let $$𝑙 be a set of labels.

 7.6.2. Constructs

The label statement with the label $𝑙 is represented by the element (𝑙𝑎𝑏𝑒𝑙 $𝑙). It specifies the

program point labelled by the label $𝑙. The labelled statement is represented by the sequence

(𝑙𝑎𝑏𝑒𝑙 $𝑙) $𝑐. It specifies that the statement $𝑐 is labelled by the label $𝑙.

The break statement is represented by the element 𝑏𝑟𝑒𝑎𝑘.

The continue statement is represented by the element 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒.

The goto statement is represented by the element (𝑔𝑜𝑡𝑜 $𝑙).

7.7. MPL7: dynamic arrays

The MPL7 language is an extension of MPL6 that adds the dynamic arrays feature: dynamic array

types, the array element access operation and the array element assignment statement.

7.7.1. Types, values, states

An element (𝑎𝑟𝑟𝑎𝑦 $𝑡) is called a dynamic array type in ⟦$𝑡⟧. An element $𝑒 is a dynamic array

type if $𝑒 is a dynamic array type in ⟦$𝑡⟧ for some $𝑡. Let $$𝑑𝑎𝑡 be a set of dynamic array types.

An element $𝑒 is an array type if $𝑒 is a dynamic array type. Let $$𝑎𝑡 be a set of array types.

The absolute type (𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑟𝑎𝑦) specifies dynamic arrays. An element $𝑑𝑎𝑟 is a dynamic

array if $𝑑𝑎𝑟 = (($𝑒∗): {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}, $𝑡: {𝑡𝑦𝑝𝑒}): : {(𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑟𝑎𝑦)}, and $𝑒∗ consists of the

elements of [𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡]. The elements $se and $t are called the content and the element type in

⟦$𝑑𝑎𝑟⟧. Let $$𝑑𝑎𝑟 be a set of dynamic arrays.

An element $𝑒 is an array if $𝑒 is a dynamic array. Let $$𝑎𝑟 be a set of arrays.

For MPL7, $$𝑡⟦𝑀𝑃𝐿7⟧ = $$𝑡⟦𝑀𝑃𝐿6⟧ ∪ $$d𝑎𝑡, $$𝑣⟦MPL7⟧ = $$𝑣⟦MPL6⟧ ∪ $$𝑑𝑎𝑟, and

$$𝑒𝑥⟦𝑀𝑃𝐿7⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿6⟧.

The dynamic array $𝑑𝑎𝑟 has the type (𝑎𝑟𝑟𝑎𝑦 $𝑡) if $𝑡 is an element type in ⟦$𝑑𝑎𝑟, $𝑠⟧. Thus, the

type (𝑎𝑟𝑟𝑎𝑦 $𝑡) specifies dynamic arrays with the element type $𝑡.

A value $𝑣 is a value in ⟦$𝑎𝑟, $𝑛⟧ if [[$𝑎𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]. . $𝑛] = $𝑣. The element $𝑣 specifies the

value of $𝑛-th element of $𝑎𝑟.

System Informatics (Системная информатика), No. 9 (2017) 151

7.7.2. Constructs

The array element access operation is represented by the element ($𝑐1 [$𝑐2]). If $𝑎𝑟 and $𝑛 are

the values of $𝑐1 and $𝑐2, then it returns the value in ⟦$𝑎𝑟, $𝑛, $𝑠⟧.

The array element assignment operation is represented by the element ($𝑐1 [$𝑐2] ≔ $𝑐3). If

$𝑑𝑎𝑟, $𝑛 and $𝑣 are the values of $𝑐1, $𝑐2 and $𝑐3, and 1 ≤ $𝑛 ≤ [𝑙𝑒𝑛 [$𝑑𝑎𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]], then

it replaces the value of the $𝑛-th element of $𝑑𝑎𝑟 by $𝑣. If $𝑑𝑎𝑟, $𝑛 and $𝑣 are the values of $𝑐1,

$𝑐2 and $𝑐3, and $𝑛 > [𝑙𝑒𝑛 [$𝑑𝑎𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]], then it replaces the value of the $𝑛-th element of

$𝑑𝑎𝑟 by $𝑣 and the values of the elements of $𝑑𝑎𝑟 from [𝑙𝑒𝑛 [$𝑑𝑎𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]] + 1 to $𝑛 − 1 by

𝑢𝑛𝑑.

The array element assignment operation is represented by the element ($𝑐1 [$𝑐2] ≔ $𝑐3) where

the expressions $𝑐1, $𝑐2 and $𝑐3 have the types (𝑎𝑟𝑟𝑎𝑦 $𝑡), 𝑛𝑎𝑡 and $𝑡 for some $𝑡. It assigns $𝑣 to

the $𝑛-th element of $𝑎𝑟 where $𝑎𝑟, $𝑛 and $𝑣 are the values of $𝑐1, $𝑐2 and $𝑐3 in ⟦$𝑠⟧.

7.8. MPL8: static arrays

The MPL7 language is an extension of MPL6 that adds the static arrays feature: static array types,

the array element access operation and the array element assignment statement.

7.8.1. Types, values, states

An element (𝑎𝑟𝑟𝑎𝑦 $𝑡 $𝑛) is called a static array type in ⟦$𝑡⟧. An element $𝑒 is a static array type

if $𝑒 is a static array type in ⟦$𝑡⟧ for some $𝑡. Let $$𝑠𝑎𝑡 be a set of static array types.

An element $𝑒 is an array type if $𝑒 is a dynamic array type, or $𝑒 is a static array type. Let $$𝑎𝑡

be a set of array types.

The absolute type (𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑟𝑟𝑎𝑦) specifies arrays. An element $𝑠𝑎𝑟 is a static array if $𝑠𝑎𝑟 =

(($𝑒∗): {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}, $𝑡: {𝑡𝑦𝑝𝑒}): : {(𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑟𝑟𝑎𝑦)}, and $𝑒∗ consists of the elements of

[𝑐𝑜𝑛𝑡𝑒𝑛𝑡 $𝑡]. The elements $se and $t are called the content and the element type in ⟦$𝑠𝑎𝑟⟧. Let

$$𝑠𝑎𝑟 be a set of arrays.

An element $𝑒 is an array if $𝑒 is a dynamic array, or $𝑒 is a static array. Let $$𝑎𝑟 be a set of

arrays

For MPL7, $$𝑡⟦𝑀𝑃𝐿7⟧ = $$𝑡⟦𝑀𝑃𝐿6⟧ ∪ $$s𝑎𝑡, $$𝑣⟦MPL7⟧ = $$𝑣⟦MPL6⟧ ∪ $$𝑠𝑎𝑟, and

$$𝑒𝑥⟦𝑀𝑃𝐿7⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿6⟧.

The array $𝑠𝑎𝑟 has the type (𝑎𝑟𝑟𝑎𝑦 $𝑡 $𝑛) if $𝑡 is an element type in ⟦$𝑠𝑎𝑟, $𝑠⟧, and

[𝑙𝑒𝑛 [$𝑠𝑎𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]] = $𝑛. Thus, the type (𝑎𝑟𝑟𝑎𝑦 $𝑡 $𝑛) specifies static arrays with the element

type $𝑡 and the content of the length $𝑛.

152 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

7.8.2. Constructs

The array element access operation does not depend on the specific features of dynamic arrays.

Therefore it is extended for static arrays by simple array redefinition.

The array element assignment operation is extended for static arrays as follows: if $𝑠𝑎𝑟, $𝑛 and

$𝑣 are the values of $𝑐1, $𝑐2 and $𝑐3, and 1 ≤ $𝑛 ≤ [𝑙𝑒𝑛 [$𝑠𝑎𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}]], then ($𝑐1 [$𝑐2] ≔

$𝑐3) replaces the value of the $𝑛-th element of $𝑠𝑎𝑟 by $𝑣.

7.9. MPL9: structures

The MPL9 language is an extension of MPL8 that adds the structures feature: the structure types,

the structure field access operation, structure declarations, and the structure field assignment

statement.

7.9.1. Types, values, states

The attribute ((𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑦𝑝𝑒) $𝑛𝑎) specifies structure types in states. A name $𝑛𝑎 is a structure

type in ⟦$𝑠⟧ if [$𝑠 . {((𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑦𝑝𝑒) $𝑛𝑎)}] ≠ 𝑢𝑛𝑑. Let $$𝑠𝑡 be a set of structure types.

For MPL9, $$𝑡⟦𝑀𝑃𝐿9⟧ = $$𝑡⟦𝑀𝑃𝐿8⟧ ∪ $$𝑠𝑡.

The attribute (𝑓𝑖𝑒𝑙𝑑 $𝑛𝑎 $𝑠𝑡) specifies the fields of the structure type $𝑠𝑡. A name $𝑓𝑖 is a field

in ⟦$𝑠𝑡, $𝑠⟧ if [$𝑠 . {(𝑓𝑖𝑒𝑙𝑑 $𝑓𝑖 $𝑠𝑡)}] ≠ 𝑢𝑛𝑑. Let $$𝑓𝑖 be a set of fields.

The attribute (𝑡𝑦𝑝𝑒 $𝑓𝑖 $𝑠𝑡) specifies the type of the field $𝑓𝑖 of the structure type $𝑠𝑡. A type $𝑡

is a type in ⟦$𝑓𝑖, $𝑠𝑡, $𝑠⟧ if [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑓𝑖 $𝑠𝑡)}] = $𝑡.

Axiom: If $𝑓𝑖 is a field in ⟦$𝑠𝑡, $𝑠⟧, then [$𝑠 . {(𝑡𝑦𝑝𝑒 $𝑠𝑡 $𝑓𝑖)}] ∈ $$𝑡⟦$𝑠⟧.

The absolute type 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 specifies structures. An element $𝑠𝑡𝑟 is a structure in ⟦$𝑠⟧ if

(($𝑣1: {$𝑓𝑖1} … $𝑣$𝑛: {$𝑓𝑖$𝑛}): {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}, $𝑠𝑡: {𝑡𝑦𝑝𝑒}): : {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒} = $𝑠𝑡𝑟, $𝑛 > 0, the

structure type $𝑠𝑡 has the fields $𝑓𝑖1, …, $𝑓𝑖$𝑛 and no other fields in ⟦$𝑠⟧, and the values $𝑣1, …,

$𝑣$𝑛 in ⟦$𝑠⟧ have the types of the fields $𝑓𝑖1, …, $𝑓𝑖$𝑛 in ⟦$𝑠𝑡, $𝑠⟧. The elements

[$𝑠𝑡𝑟 . {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}] and $𝑠𝑡 are called the content and the type in ⟦$𝑠𝑡𝑟⟧. The elements $𝑓𝑖1, …,

$𝑓𝑖$𝑛 are called the fields in ⟦$𝑠𝑡𝑟⟧. The elements $𝑣1, …, $𝑣$𝑛 are called the values of these fields

in ⟦$𝑠𝑡⟧. Let $$𝑠𝑡𝑟 be a set of structures.

For MPL9, $$𝑣⟦𝑀𝑃𝐿9⟧ = $$𝑣⟦𝑀𝑃𝐿8⟧ ∪ $$𝑠𝑡𝑟, and $$𝑒𝑥⟦𝑀𝑃𝐿9⟧ = $$𝑒𝑥⟦𝑀𝑃𝐿8⟧.

 7.9.2. Constructs

The structure declaration is represented by the element (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 $𝑛𝑎 ($𝑡𝑛𝑎1 … $𝑡𝑛𝑎$𝑛)). It

specifies the declaration of the structure type with the name $𝑛𝑎, and the fields $𝑛𝑎⟦$𝑡𝑛𝑎1⟧, ...,

$𝑛𝑎⟦$𝑡𝑛𝑎$𝑛⟧ of the types $𝑡⟦$𝑡𝑛𝑎1⟧, ..., $𝑡⟦$𝑡𝑛𝑎$𝑛⟧.

System Informatics (Системная информатика), No. 9 (2017) 153

Axiom: structure declarations are elements of the program body.

The structure field access operation is represented by the element ($𝑐 \. $𝑓𝑖). If $𝑠𝑡𝑟 is the value

of $𝑐, then it returns the value in ⟦$𝑓𝑖, $𝑠𝑡𝑟, $𝑠⟧.

The structure field assignment operation is represented by the element ($𝑐1 \. $𝑓𝑖 ≔ $𝑐2). If $𝑠𝑡𝑟

and $𝑣 are the values of $𝑐1 and $𝑐2, then it assigns $𝑣 to the field $𝑓𝑖 of $𝑠𝑡𝑟.

8. Conclusion

In the paper the formalism of the conceptual model of a programming language has been proposed.

It represents types of the programming language, values (in particular, the values of the types the

programming language), exceptions (the special kind of values), states and executable constructs (in

particular, the elements of programs in the programming language) of the abstract machine of the

language, and the constraints (axioms) for these entities at the conceptual level. The new definition

of conceptual transition systems oriented to specification of conceptual models of programming

languages has been proposed, the language CTSL for redefined conceptual transition systems has

been described, and the technique of the use of CTSL as a domain-specific language for specification

of conceptual models of programming languages has been presented. We have conducted the

incremental development of the conceptual models for the family of sample programming languages

to illustrate this technique.

We plan to use the CTSL language as a domain specific language oriented to the development of

the conceptual operational semantics of programming languages defined as the operational semantics

of representations of executable constructs of the abstract machines of the programming languages in

CTSL.

References

1. Prinz A., Møller-Pedersen B., Fischer J. Object-Oriented Operational Semantics. In: Grabowski J.,

Herbold S. (eds) System Analysis and Modeling. Technology-Specific Aspects of Models. SAM 2016.

Lecture Notes in Computer Science, vol 9959. Springer, Cham. P. 132-147.

2. Wider A. Model transformation languages for domain-specific workbenches // Ph.D. thesis, Humboldt-

Universitat zu Berlin. 2015.

3. Felleisen M., Findler R.B., Flatt M. // Semantics Engineering with PLT Redex, 1st edn. The MIT Press,

Cambridge. 2009.

4. Kahn G. Natural semantics. In: Brandenburg F.J., Vidal-Naquet G., Wirsing M. (eds.) STACS 1987.

LNCS. 1987. Vol. 247, P. 22–39.

5. Mosses P.D. Structural operational semantics modular structural operational semantics // J. Logic

Algebr. Program. 2004. Vol. 60. P. 195–228.

154 Anureev I.S., Promsky A.V. Conceptual transition systems and their application to development of conceptual models

6. Plotkin G.D.: A structural approach to operational semantics // Technical report. DAIMI FN-19,

AARHUS UNIVERSITY (DK). 1981.

7. OMG Editor. OMG Meta Object Facility (MOF) Core Specification Version 2.4.2. // Technical report,

Object Management Group. 2014.

8. Gurevich Y. Abstract State Machines: An Overview of the Project. Foundations of Information and

Knowledge Systems (FoIKS): Proc. Third Internat. Symp. Lect. Notes Comput. Sci. 2004. Vol. 2942.

P. 6–13.

9. Rosu G., Serbanuta T.F. An overview of the K semantic framework // J. Logic Algebr. Program. 2010.

79(6). P. 397–434.

10. Clavel M., Duran F., Eker S., Lincoln P., Marti-Oliet N., Meseguer J., Quesada J.F. Rewriting logic and

its applications maude: specification and programming in rewriting logic // Theor. Comput. Sci. 2002.

285(2). P. 187–243.

11. Anureev I.S. Conceptual Transition Systems // System Informatics. 2015. Vol. 5. P. 1–41.

12. Anureev I.S. Kinds and language of conceptual transition systems // System Informatics. 2015. Vol. 5.

P. 55–74.

