
System Informatics (Системная информатика), No. 5 (2015) 1

УДК 004.8

Conceptual transition systems∗

Anureev I.S. (Institute of Informatics Systems)

A new formalism for description of ontologies of systems and their changes – concep-

tual transition systems – is presented. The basic definitions of the theory of conceptual

transition systems are given. These systems were demonstrated to allow to specify both

typical and new kinds of ontological elements constituting ontologies. The classification of

ontological elements based on such systems is described.

Keywords: transition systems, conceptual structures, ontologies, ontological elements,

conceptual transition systems, conceptuals

1. Introduction

Development of formalisms, languages and tools for describing the conceptual structure of

various systems is an important problem of the modern knowledge industry. Description of

changes of the conceptual structure of the system when it functions is an another important

problem.

Conceptual transition systems (CTSs) are a formalism of description (specification) of sys-

tems that solves these problems. This formalism is based on the following requirements:

1. It describes the conceptual structure of the specified system.

2. It describes the content of the conceptual structure of the specified system, i. e. it

describes the specified system in the context of the conceptual structure.

3. It describes the change of the conceptual structure of the specified system.

4. It describes the change of the content of the conceptual structure of the specified system,

i. e. it describes the change of the specified system in the context of the conceptual

structure.

5. It is quite universal to specify typical ontological elements (concepts, attributes, concept

instances, relations, relation instances, individuals, types, domains, and so on.).

6. It provides a quite complete classification of ontological elements, including the determi-

nation of their new kinds and subkinds.

7. It is based on the conception ’state – transition’ of the usual transition systems, keeping

their simplicity and universality and adding a conceptual ’filling’. This requirement is
∗Partially supported by RFBR under grants 15-01-05974 and 15-07-04144.



2 Anureev I.S. Conceptual transition systems

important since the simplicity of determination of transition systems makes them an

universal formalism to describe the behavior of various systems (algorithms, programs,

software models, computer systems, and so on.).

8. It supports reflection of any order, i. e. allows to specify: the system (reflection of the

order 0), the specification of the system (reflection of the order 1), the specification of

the specification of the system (reflection of the order 2) and so on. Specifications of the

higher order (with reflection of the higher order) impose restrictions on the specifications

of the lower order (with reflection of the lower order).

To our knowledge, there is no formalism that meets all the above requirements. Comparison

of CTSs with the formalisms which partially meet these requirements is given in section 9.

The paper has the following structure. The preliminary concepts and notation are given in

section 2. The basic definitions of the theory of CTSs are given in section 3. The classification

of elements of conceptual states of CTSs such that concepts, attributes and individuals is

considered in section 4. The classification of conceptuals (which can be considered as ’atoms’

of conceptual states) and their associated ontological elements is presented in section 5. The

ontological elements that are not directly represented in terms of elements and conceptuals

of states are modelled in these terms in section 6. A generic conceptual describing sets of

conceptuals matching a pattern is defined in section 7. We establish that CTSs meet the above

requirements in section 8. CTSs are compared with the related formalisms in section 9.

2. Preliminaries

Let bool = {true, false}; int, nat and nat0 denote the sets of integers, natural numbers and

natural numbers with zero, respectively; obj, fun, set, lab, arg, and val denote sets of objects,

functions, sets, labels, function arguments and function values, respectively.

The names of the variables which take the values from the set with the name aw, where a

is a symbol, and w is a word, are denoted by ȧw, ȧw1, ȧw′ and so forth. For example, ṡet, ṡet1,

ṡet′ are the names of the variables which take the values from the set set. Depending on the

context, the name of a variable is interpreted as either the variable, or the value of the variable.

Let sup(ḟun) and ω denote the support of ḟun and the indeterminate value of ḟun, respec-

tively.

Let ḟun(ȧrg1 ← v̇al1, . . ., ȧrgṅat ← v̇alṅat) denote the function ḟun′ such that ḟun′(ȧrg) =

ḟun(ȧrg), if ȧrg is distinct from ȧrg1, ..., ȧrgṅat, and ḟun′(ȧrgṅat′) = v̇alṅat′ , if 1 ≤ ṅat′ ≤ ṅat.



System Informatics (Системная информатика), No. 5 (2015) 3

Let {ȧrg1:v̇al1, . . ., ȧrgṅat:v̇alṅat} denote the function ḟun such that

sup(ḟun) = {ȧrg1, . . ., ȧrgṅat}, and ḟun(ȧrg1) = v̇al1, ..., ḟun(ȧrgṅat) = v̇alṅat. The arguments

ȧrg1, ..., ȧrgṅat are pairwise distinct.

The terms used in the paper are context-dependent. Contexts have the formJȯbj1, . . ., ȯbjṅatK, where the embedded contexts ȯbj 1, ..., ȯbj ṅat have the form: l̇ab:ȯbj, l̇ab:

or ȯbj.

The context in which some embedded contexts are omitted is called a partial context. All

omitted embedded contexts are considered bound by the existential quantifier, unless otherwise

specified.

Let ȯbj Jȯbj1, . . ., ȯbjṅatK denote the object ȯbj in the context Jȯbj1, . . ., ȯbjṅatK.
3. Basic definitions of the theory of conceptual transition systems

Let cts and sys be sets of CTSs and systems specified by these CTSs, respectively. Let ċts

specifies ṡys.

3.1. The example of the specified system

Let geoSys ∈ sys be a system which is specified by ċts and is a through illustrative example

of this paper.

The conceptual structure of geoSys includes the following entities:

• the kinds of geometric spaces (Euclidean, Riemannian, Lobachevskian and so on) specified

by the labels Euclidean, Riemannian, Lobachevskian and so on;

• the kinds of geometric figures (triangles, rectangles, cubes and so on) specified by the

concepts triangle, rectangle, cube and so on;

• geometric elements (certain geometric figures in a certain space) specified by individuals.

Let geoEle be a set of geometric elements;

• the numerical characteristics of geometric figures (length, area, volume and so on) speci-

fied by the attributes length, area, volume and so on;

• the units (of measurement) of the numerical characteristics (inches, centimeters, metres

and so on) specified by the labels inch, centimeter, metre and so on;

• the numeral systems for representing the values of the numerical characteristics (binary,

octal, decimal and so on) specified by the natural numbers 2, 8, 10 and so on;

• the dimensions of geometric spaces specified by the natural numbers 1, 2, 3 and so on.



4 Anureev I.S. Conceptual transition systems

The change of the system geoSys can, for example, include various geometric transformations

such that parallel a shift, rotation, homothety and so on.

3.2. Conceptual transition systems

A transition system ċts = (sta, TraRel) is called a conceptual transition system in JatoK,
if ato is a set of atoms in JċtsK, sta is a set of conceptual states in JċtsK, and traRel ∈ tra →

bool is a transition relation in JċtsK, where tra = sta × sta is a set of transitions in JċtsK. The

system ċts executes a transition ṫra, if traRel(ṫra). The notion of conceptual state is based on

notions of state, element and conceptual which are defined below.

A set ato is called a set of atoms in JċtsK, if ω /∈ ato, int ⊆ ato, and true, false ∈ ato. Atoms

in JċtsK are elementary ’bricks’ of ċts . They are used to define elements, conceptuals and states

in JċtsK.
Elements in JċtsK are basic structures of ċts . In particular, they specify elements of ṡys . Let

ele be a set of elements in JċtsK. An object ȯbj is called an element in JċtsK, if the following

properties hold:

1. ȯbj is an atom in JċtsK, or

2. ȯbj has the form {l̇ab1:ėle1, ..., l̇abṅat:ėleṅat}, where the labels l̇ab1, ..., l̇abṅat are pairwise

distinct, or

3. ȯbj has the form (ėle1, ..., ėleṅat0), or

4. ȯbj has the form {ėle1, ..., ėleṅat0}.

Elements of the forms 2, 3, and 4 are called labelled, ordered and unordered (element) struc-

tures, respectively. Let labStr, ordStr, unoStr and eleStr = labStr ∪ ordStr ∪ unoStr be sets

of labelled structures, ordered structures, unordered structures and element structures, respec-

tively. The elements () and {} are called empty structures (the empty ordered structure and

the empty unordered structure, respectively).

Let 1 ≤ ṅat′ ≤ ṅat. Let ėleStr(ṅat′) and ėleStr(%labṅat′) denote ėleṅat′ , if ėleStr has the

form (ėle1, ..., ėleṅat) and {lab1:ėle1, ..., labṅat:ėleṅat}, respectively.

The function len ∈ ele → nat0 is called a length in Jele:K, if len(ȧto) = 0, and len(ėleStr) is

the number of elements in ėleStr.

The equality operation = on elements is defined as follows: ėle = ėle′ if and only if len(ėle)

= len(ėle′) = ṅat, and

• ėle and ėle′ are equal atoms, or



System Informatics (Системная информатика), No. 5 (2015) 5

• ėle = (ėle1, . . ., ėleṅat0), ėle′ = (ėle′1, . . ., ėle′ṅat0), ėle1 = ėle′1, ..., ėleṅat0 = ėle′ṅat0, or

• ėle = {ėle1, . . ., ėleṅat0}, ėle′ = {ėle′1, . . ., ėle′ṅat0}, ėle1 = ėle′1, ..., ėleṅat0 = ėle′ṅat0, or

• ėle = {l̇ab1:ėle1, . . ., l̇abṅat:ėleṅat}, ėle′ = {l̇ab′1:ėle′1, . . ., l̇ab′ṅat:ėle
′
ṅat},

l̇ab1 = l̇ab′1, ..., l̇abṅat = l̇ab′ṅat, ėle1 = ėle′1, ..., ėleṅat = ėle′ṅat.

Conceptuals in JċtsK are the special kind of elements which specify ontological elements of

ṡys . An element l̇abStr is called a conceptual in JċtsK, if all its labels are integers. Let con be

a set of conceptuals.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2).

Then the following properties hold:

• ċon is a conceptual in ċts ;

• ċon specifies the area (the label −1 ) of the triangle (the label 1 ) ġeoEle (the label 0 ) in

three-dimensional (the label 3 ) Euclidean (the label 2 ) space, measured in inches (the

label −2 ) in the decimal system (the label −3 ).

•

A function ḟun ∈ con→ ele is called a conceptual state in JċtsK. A state in JċtsK is called con-

ceptual because it specifies the conceptual structure of the system ṡys , associating conceptuals

with their values.

A function sem ∈ con × sta→ ele is called a semantics in Jcon:K, if sem(ċon, ṡta) = ṡta(ċon).

The element sem(ċon, ṡta) is called the value in Jċon, ṡtaK.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta(ċon) = 3. Then the following properties hold:

• sem(ċon, ṡta) = 3 ;

• 3 is the value in Jċon, ṡtaK;
• the area of the triangle ġeoEle in two-dimensional Euclidean space is equal to 3 inches

in the decimal system in JṡtaK.
•

3.3. Structure of conceptuals

An element ėle is called an element in Jċon, i̇ntK, if ėle= ċon(i̇nt). A number i̇nt is called

an element order in Jċon, ėleK, if ėle= ċon(i̇nt). Let eleOrd be a set of element orders.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2).

Then the following properties hold:



6 Anureev I.S. Conceptual transition systems

• 10, inch, area, ġeoEle, triangle, Euclidean, 2 are elements in JċonK in J−3K, J−2K, J−1K,J0K, J1K, J2K, J3K, respectively;

• −3, −2, −1, 0, 1, 2, 3 are element orders in JċonK in J10K, JinchK, JareaK, JġeoEleK,JtriangleK, JEuclideanK, J3K, respectively.

•

Proposition 1. The value ω is not an element in JċonK.
Proof. This follows from the fact that ω is not an element in JċtsK. 2

Proposition 2. The number of elements in JċonK is finite.

Proof. This follows from the fact that sup(ċon) is finite, and ω is not an element in JċonK.
2

Proposition 3. If ėle is an element in JċonK, then the number of element orders in Jċon,

ėleK is finite.

Proof. This follows from the fact that sup(ċon) is finite, and ω is not an element in JċonK.
2

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:10).

Then the following properties hold:

• −3 and 3 are element orders in Jċon, 10K;
• if ėle is an element in JċonK which is distinct from 10, then there is the unique element

order in Jċon, ėleK.
•

Proposition 4. The number of element orders in JċonK is finite.

Proof. This follows from the fact that sup(ċon) is finite. 2

An order ėleOrdJċon, ėleK is called a minimal element order in Jċon, ėleK, if i̇nt is not an

element order in Jċon, ėleK for each i̇nt such that i̇nt< ėleOrd. An order ėleOrdJċonK is called

a minimal element order in JċonK, if i̇nt is not an element order in JċonK for each i̇nt such that

i̇nt < ėleOrd. An element ėle is called a minimal element in JċonK, if there exists ėleOrdJċon,

ėleK such that ėleOrd is a minimal element order in JċonK.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:10).

Then the following properties hold:

• −3, −2, −1, 0, 1, 2, 3 are element orders in JċonK in J10K, JinchK, JareaK, JġeoEleK,JtriangleK, JEuclideanK, J10K, respectively;

• −3 is a minimal element order in JċonK;



System Informatics (Системная информатика), No. 5 (2015) 7

• 10 is a minimal element in JċonK.
•

An order ėleOrdJċon, ėleK is called a maximal element order in Jċon, ėleK, if i̇nt is not an

element order in Jċon, ėleK for each i̇nt such that ėleOrd < i̇nt. An order ėleOrdJċonK is called

a maximal element order in JċonK, if i̇nt is not an element order in JċonK for each i̇nt such that

ėleOrd < i̇nt. An element ėle is called a maximal element in JċonK, if there exists ėleOrdJċon,

ėleK such that ėleOrd is a maximal element order in JċonK.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:10).

Then the following properties hold:

• −3, −2, −1, 0, 1, 2, 3 are element orders in JċonK in J10K, JinchK, JareaK, JġeoEleK,JtriangleK, JEuclideanK, 10, respectively;

• 3 is a maximal element order in JċonK;
• 10 is a maximal element in JċonK;
• 10 is both minimal and maximal element in JċonK.

•

An element ėle is called a null element in JċonK, if ėle is an element in Jċon, 0K.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2).

Then ġeoEle is a null element in JċonK. •

3.4. Conceptuals and elements of states

A conceptual ċon is called a conceptual in JṡtaK, if sem(ċon, ṡta) ̸= ω.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta(ċon) = 3. Then ċon is a conceptual in JṡtaK. •

An element ėle is called an element in Jṡta, i̇nt, ċonJṡtaKK, if ėle is an element in Jċon,

i̇ntK. The number i̇nt is called an order in Jėle, ṡta, ċonK. The conceptual ċon is called a

concretization conceptual in Jėle, ṡta, i̇ntK.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta(ċon) = 3. Then the following properties hold:

• 10, inch, area, ġeoEle, trianle, Euclidean, 3 are elements in JṡtaK in J−3K, J−2K, J−1K,J0K, J1K, J2K, J3K in JċonK, respectively;

• −3, −2, −1, 0, 1, 2, 3 are orders in J10K, JinchK, JareaK, JġeoEleK, JtriangleK, JEuclideanK,J2K in JṡtaK in JċonK, respectively;



8 Anureev I.S. Conceptual transition systems

• ċon is a concretization conceptual in J10K, JinchK, JareaK, JġeoEleK, JtriangleK, JEuclideanK,J2K in JṡtaK in J−3K, J−2K, J−1K, J0K, J1K, J2K, J3K, respectively.

•

Proposition 5. For all ėle and i̇nt there exist ṡta and ċonJṡtaK such that ėle is an element

in Jṡta, i̇nt, ċonK.
Proof. We define ṡta and ċon as follows: ċon(i̇nt) = ėle, and ṡta(ċon) ̸= ω. Then ėle is an

element in Jṡta, i̇nt, ċonK. 2

4. Classification of elements of states

Elements in JṡtaK are subclassified into individuals, concepts and attributes.

Individuals in JṡtaK specify elements of ṡys . An element ėleJṡtaK is called an individual inJṡta, ċonJṡtaKK, if ėle is an element in Jṡta, 0, ċonK.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then ġeoEle is an individual in JṡtaK in JċonK. •

Concepts in JṡtaK generalizes the usual concepts of the ontology of sys which are interpreted

as sets of elements of sys. An element ėleJṡtaK is called a concept in Jṡta, ṅat, ċonJṡtaKK, if ėle

is an element in Jṡta, ṅat, ċonK. Let conc be a set of concepts.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then triangle, Euclidean, 3 are concepts in JṡtaK in J1K, J2K, J3K in JċonK,
respectively. •

Attributes in JṡtaK generalizes the usual attributes of the ontology of sys which are inter-

preted as characteristics of elements of sys. An element ėleJṡtaK is called an attribute in Jṡta,
ṅat, ċonJṡtaKK, if ėle is an element in Jṡta, −ṅat, ċonK. A number ṅat is called an order inJatr:ėle, ṡta, ċonK. The label atr is used to distinguish orders of concepts from orders of at-

tributes, since the element ėle can be both a concept and an attribute in Jṡta, ṅat, ċonK. The

conceptual ċon is called a concretization conceptual in Jatr:ėle, ṡta, ṅatK. Let atr be a set of

attributes.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

• area, inch, 10 are attributes in JṡtaK in J1K, J2K, J3K in JċonK, respectively;

• 1, 2, 3 are orders in Jatr:areaK, Jatr:inchK, Jatr:10K in JṡtaK in JċonK, respectively;

• ċon is a concretization conceptual in Jatr:areaK, Jatr:inchK, Jatr:10K in JṡtaK in J1K, J2K,



System Informatics (Системная информатика), No. 5 (2015) 9

J3K, respectively.

•

Concepts and attributes are considered in detail below.

4.1. Concepts

The usual concepts of the ontology of ṡys which are interpreted as sets of elements of ṡys are

specified by the special kind of concepts in JṡtaK – direct concepts in JṡtaK. An element ėleJṡtaK
is called a direct concept in Jṡta, ċonJṡtaKK, if ėle is a concept in Jṡta, 1, ċonK. Let dirConc be

a set of direct concepts.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then triangle is a direct concept in JṡtaK in JċonK. It specifies the element

ġeoEle as a triangle in JṡtaK. •

An element ėle is called an element in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK,
if ċonc is a concept in Jṡta, ṅat1, ċonK, ėle is an element in Jċon, ṅat2K, and ṅat2 < ṅat1. Thus,

elements of the concept ċonc can be concepts of orders which are less than the order of ċonc,

individuals and attributes of any orders.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

1. 10, inch, area, ġeoEle are elements in Jconc:triangleK in JṡtaK in JconcOrd:1K inJeleOrd:-3K, JeleOrd:-2K, JeleOrd:−1K, JeleOrd:0K in JċonK, respectively. In particular,

this means that the triangle ġeoEle has the area which is measured in inches represented

in the decimal system in JṡtaK;
2. 10, inch, area, ġeoEle, triangle are elements in Jconc:EucludianK in JṡtaK in JconcOrd:2K

in JeleOrd:-3K, JeleOrd:-2K, JeleOrd:−1K, JeleOrd:0K, JeleOrd:1K in JċonK, respectively. In

particular, this means that the triangle ġeoEle belongs to Euclidean space in JṡtaK;
3. 10, inch, area, ġeoEle, triangle, Eucludian are elements in Jconc:2K, in JṡtaK in JconcOrd:3K

in JeleOrd:−3K, JeleOrd:−2K, JeleOrd:−1K, JeleOrd:0K, JeleOrd:1K, JeleOrd:2K in JċonK,
respectively. In particular, this means that the triangle ġeoEle belongs to two-dimensional

space in JṡtaK.
•

Proposition 6. If ċonc is a concept in JṡtaK, and ėle is an element in Jconc:ċonc, ṡta,

concOrd:1K, then ėle is either an individual in JṡtaK, or ėle is an attribute in JṡtaK.



10 Anureev I.S. Conceptual transition systems

Proof. This follows from the definition of direct concepts. 2

A set ṡet is called the content in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK, if

ṡet is a set of elements in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonK. The content of a

concept describes its semantics.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

• {2, inch, area, ġeoEle} is the content in Jconc:triangleK in JṡtaK;
• {2, inch, area, ġeoEle, triangle} is the content in Jconc:EucludianK in JṡtaK;
• {2, inch, area, ġeoEle, triangle, Eucludian} is the content in Jconc:2K in JṡtaK.

•

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:3),

ċon2 = (−3:10, −2:inch, −1:area, 0:ġeoEle2, 1:triangle, 2:Riemannian, 3:3), ċon3 = (−3:10,

−2:inch, −1:area, 0:ġeoEle1, 3:2), and ṡta = (ċon1:3, ċon2:4, ċon3:2). Then the following

properties hold:

• {ġeoEle1, ġeoEle2} is the content in Jconc:triangle, ṡta, concOrd:1, eleOrd:0K. This means

that the individuals ġeoEle1 and ġeoEle2 are triangles in JṡtaK;
• {triangle} is the content in Jconc:EucludianK, Jconc:RiemannianK in Jṡta, concOrd:2,

eleOrd:1K, respectively. This means that Euclidean and Riemannian spaces can include

triangles in JṡtaK;
• {Eucludian, Riemannian} is the content in Jconc:3, ṡta, concOrd:3, eleOrd:2K. This

means that three-dimensional space can be either Euclidean or Riemannian in JṡtaK;
• {ġeoEle1} is the content in Jconc:2, ṡta, concOrd:3, eleOrd:0K. This means that two-

dimensional space includes the individual ġeoEle1 in JṡtaK.
•

An element ėle is called an element in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaK,
med:ṅat0K, if ėle is an element in Jċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonK, and ṅat0 is the

number of element orders ṅat in JċonK such that ṅat2 < ṅat < ṅat1. The integer ṅat0 is called

a mediatorial decree in Jėle, ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonK. It specifies how many

mediators separate ėle from ċonc in ċon. The element ėle′ is called a mediator in Jėle, ċonc,

ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK, if ėle′ is an element in Jċon, ṅatK, and ṅat2 < ṅat <

ṅat1.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),



System Informatics (Системная информатика), No. 5 (2015) 11

and ṡta = (ċon:3). Then ġeoEle is an element in the following contexts:

• Jconc:triangle, ṡta, concOrd:1, eleOrd:0, ċonK with the mediatorial decree 0 and without

mediators;

• Jconc:Euclidean, ṡta, concOrd:2, eleOrd:0, ċonK with the mediatorial decree 1 and the

mediator triangle;

• Jconc:2, ṡta, concOrd:3, eleOrd:0, ċonK with the mediatorial decree 2 and the mediators

triangle and Euclidean.

•

An element ėle is called a direct element in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2,

ċonJṡtaKK, if ėle is an element in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċon, med:0K.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

• ġeoEle is a direct element in Jconc:triangle, ṡta, concOrd:1, eleOrd:0K;
• triangle is a direct element in Jconc:Eucludian, ṡta, concOrd:2, eleOrd:1K;
• Eucludian is a direct element in Jconc:2, ṡta, concOrd:3, eleOrd:2K.

•

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:3),

ċon2 = (−3:10, −2:inch, −1:area, 0:ġeoEle2, 1:triangle, 2:Riemannian, 3:3), ċon3 = (−3:10,

−2:inch, −1:area, 0:ġeoEle1, 3:2), and ṡta = (ċon1:3, ċon2:4, ċon3:2). Then the following

properties hold:

1. ġeoEle1 and ġeoEle2 are direct elements in Jconc:triangle, ṡtaK;
2. triangle is a direct element in Jconc:EucludianK and Jconc:RiemannianK in JṡtaK;
3. Eucludian and Riemannian are direct elements in Jconc:3, ṡtaK;
4. ġeoEle1 is a direct element in Jconc:2, ṡtaK.

•

A set ṡet is called the direct content in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK,
if ṡet is a set of direct elements in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonK.

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:3),

ċon2 = (−3:10, −2:inch, −1:area, 0:ġeoEle2, 1:triangle, 2:Riemannian, 3:3), ċon3 = (−3:10,

−2:inch, −1:area, 0:ġeoEle1, 3:2), and ṡta = (ċon1:3, ċon2:4, ċon3:2). Then the following

properties hold:

• {ġeoEle1, ġeoEle2} is the direct content in Jconc:triangle, ṡtaK;



12 Anureev I.S. Conceptual transition systems

• {triangle} is the direct content in Jconc:EucludianK, Jconc:RiemannianK in JṡtaK, respec-

tively;

• {Eucludian, Riemannian} is the direct content in Jconc:3, ṡtaK;
• {ġeoEle1} is the direct content in Jconc:2, ṡtaK.

•

A set ṡet is called the content in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaK,
med:ṅat3K, if ṡet is a set of elements in Jconc:ċonc, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċon,

med:ṅat3K.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:10, −2:inch, −1:area, 0:ġeoEle2, 1:triangle, 2:Riemannian, 3:2), ċon3 = (−3:10,

−2:inch, −1:perimeter, 0:ġeoEle3, 2:Euclidean, 3:2), and ṡta = (ċon1:3, ċon2:4, ċon3:2). Then

the following properties hold:

• {ġeoEle1, ġeoEle2} is the content in Jconc:2, ṡta, concOrd:3, eleOrd:0, med:2K;
• {ġeoEle3} is the content in Jconc:2, ṡta, concOrd:3, eleOrd:0, med:1K;
• {area} is the content in Jconc:2, ṡta, concOrd:3, eleOrd:−1, med:3K;
• {perimeter} is the content in Jconc:2, ṡta, concOrd:3, eleOrd:−1, med:2K.

•

4.2. Classification and interpretation of concepts

Concepts are classified according to their orders.

A concept ċonc in Jṡta, concOrd:1K specifies a usual concept of the ontology of ṡys . Elements

in Jconc:ċonc, ṡta, concOrd:1)K are attributes and individuals in JṡtaK.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:2, −2:cm, −1:perimeter, 0:ġeoEle2, 1:triangle, 2:Euclidean, 3:2), and ṡta = (ċon1:3,

ċon2:4). Then the following properties hold:

1. The direct concept triangle specifies triangles in JṡtaK.
2. The individuals ġeoEle1 and ġeoEle2 are elements of the order 0 of the direct concept

triangle in JṡtaK. This means that ġeoEle1 and ġeoEle2 are triangles in JṡtaK.
3. The attributes area and perimeter are elements of the order −1 of the direct concept

triangle in JṡtaK. This means that triangles can have area and perimeter in JṡtaK.
4. The attributes inch and cm are elements of the order −2 of the direct concept triangle

in JṡtaK. This means that numerical characteristics of triangles can be measured in inches



System Informatics (Системная информатика), No. 5 (2015) 13

and centimetres in JṡtaK.
5. The attributes 10 and 2 are elements of the order −3 of the direct concept triangle

in JṡtaK. This means that the values of numerical characteristics of triangles can be

represented in decimal and binary systems in JṡtaK.
•

A concept ċonc in Jṡta, concOrd:2K specifies a concept space of the ontology of ṡys . Elements

in Jconc:ċonc, ṡta, concOrd:2K are attributes, individuals and direct concepts in JṡtaK.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:2, −2:cm, −1:perimeter, 0:ġeoEle2, 1:square, 2:Euclidean, 3:2), and ṡta = (ċon1:3,

ċon2:4). Then the following properties hold:

1. The concept space Euclidean specifies Euclidean space in JṡtaK.
2. The direct concepts triangle and square are elements of the order 1 of the concept space

Euclidean in JṡtaK. This means that triangles and squares can belong to Euclidean space

in JṡtaK.
3. The individuals ġeoEle1 and ġeoEle2 are elements of the order 0 of the concept space

Euclidean in JṡtaK. This means that the geometric elements ġeoEle1 and ġeoEle2 belong

to Euclidean space in JṡtaK.
4. The attributes area and perimeter are elements of the order −1 of the concept space

Euclidean in JṡtaK. This means that geometric elements from Euclidean space can have

area and perimeter in JṡtaK.
5. The attributes inch and cm are elements of the order −2 of the concept space Euclidean

in JṡtaK. This means that numerical characteristics of geometric elements from Euclidean

space can be measured in inches and centimetres in JṡtaK.
6. The attributes 10 and 2 are elements of the order −3 of the concept space Euclidean

in JṡtaK. This means that values of numerical characteristics of geometric elements from

Euclidean space can be represented in decimal and binary systems in JṡtaK.
•

A concept ċonc in Jṡta, concOrd:3K specifies a space of concept spaces of the ontology of ṡys .

Elements in conc:ċonc, ṡta, concOrd:3 are attributes, individuals, direct concepts and concept

spaces in JṡtaK.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:2, −2:cm, −1:perimeter, 0:ġeoEle2, 1:square, 2:Riemannian, 3:2), and ṡta =



14 Anureev I.S. Conceptual transition systems

(ċon1:3, ċon2:4). Then the following properties hold:

1. The concept space space 2 specifies two-dimensional space in JṡtaK.
2. The concept spaces Euclidean and Riemannian are elements of the order 2 of the concept

space space 2 in JṡtaK. This means that Euclidean and Riemannian spaces can be two-

dimensional in JṡtaK.
3. The direct concepts triangle and square are elements of the order 1 of the concept space

space 2 in JṡtaK. This means that triangles and squares can belong to two-dimensional

space in JṡtaK.
4. The individuals ġeoEle1 and ġeoEle2 are elements of the order 0 of the concept space

space 2 in JṡtaK. This means that geometric elements ġeoEle1 and ġeoEle2 belong to

two-dimensional space in JṡtaK.
5. The attributes area and perimeter are elements of the order −1 of the concept space

space 2 in JṡtaK. This means that geometric elements from two-dimensional space can

have area and perimeter in JṡtaK.
6. The attributes inch and cm are elements of the order −2 of the concept space space

2 in JṡtaK. This means that numerical characteristics of geometric elements from two-

dimensional space can be measured in inches and centimetres in JṡtaK.
7. The attributes 10 and 2 are elements of the order −3 of the concept space space 2 inJṡtaK. This means that values of numerical characteristics of geometric elements from

two-dimensional space can be represented in decimal and binary systems in JṡtaK.
•

A concept ċonc in Jṡta, concOrd:i̇ntK, where i̇nt > 3, is classified and interpreted in the

similar way (by the introduction of the space of concept space spaces and so on.).

4.3. The attributes

Attributes use the same terminology as concepts.

The usual attributes of the ontology of ṡys which are interpreted as characteristics of elements

of ṡys are specified by the special kind of attributes in JṡtaK – direct attributes in JṡtaK.
An element ėleJṡtaK is called a direct attribute in Jṡta, ċonJṡtaKK, if ėle is an attribute inJṡta, concOrd:1, ċonK.
Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:



System Informatics (Системная информатика), No. 5 (2015) 15

• area is a direct attribute in Jṡta, ċonK. It specifies the individual ġeoEle as the element

which has an area in JṡtaK;
• area is a direct attribute in JṡtaK. It specifies the set of elements which have an area inJṡtaK.

•

An element ėle is called an element in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK, if ȧtt

is an attribute in Jṡta, ṅat1, ċonK, ėle is an element in Jċon, ṅat2K, and −ṅat1 < ṅat2. Thus,

elements of the attribute ȧtt can be attributes of orders which is less than the order of ȧtt ,

individuals and concepts of all orders.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

1. ġeoEle, triangle, Euclidean and 2 are elements in Jatt:area, ṡta, attOrd:1K in JeleOrd:0K,JeleOrd:1K, JeleOrd:2K, JeleOrd:3K in JċonK, respectively. In particular, this is means that

the triangle ġeoEle from two-dimensional Euclidean space has an area in JṡtaK.
2. area, ġeoEle, triangle, Euclidean and 2 are elements in Jatt:inch, ṡta, attOrd:2K inJeleOrd:−1K, JeleOrd:0K, JeleOrd:1K, JeleOrd:2K, JeleOrd:3K in JċonK, respectively. In par-

ticular, this means that the area of the triangle ġeoEle from two-dimensional Euclidean

space is measured in inches in JṡtaK.
3. inch, area, ġeoEle, triangle, Euclidean and 2 are elements in Jatt:10, ṡta, attOrd:3K inJeleOrd:−2K, JeleOrd:−1K, JeleOrd:0K, JeleOrd:1K, JeleOrd:2K, JeleOrd:3K in JċonK, respec-

tively. This means that the area of the triangle ġeoEle from two-dimensional Euclidean

space measured in inches is represented in the decimal system in JṡtaK.
•

Proposition 7. If ȧtt is an attribute in JṡtaK, and ėle is an element in Jatt:ȧtt, ṡta, attOrd:1K,
then ėle is either an individual or a concept in JṡtaK.

Proof. This follows from the definition of direct attributes. 2

A set ṡet is called the content in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK, if ṡet is

a set of elements in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonK. The content of an attribute

describes its semantics.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

• {ġeoEle, triangle, Euclidean, 2} is the content in Jatt:area, ṡtaK;



16 Anureev I.S. Conceptual transition systems

• {area, ġeoEle, triangle, Euclidean, 2} is the content in Jatt:inch, ṡtaK;
• {inch, area, ġeoEle, triangle, Euclidean, 2} is the content in Jatt:10, ṡtaK.

•

An element ėle is called an element in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaK,
med:ṅat0K, if ėle is an element in Jȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonK, and ṅat0 is the

number of element orders ṅat in JċonK such that ṅat2 < ṅat < ṅat1. A number ṅat0 is called

a mediatorial degree in Jėle, att:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonK. It specifies how many

mediators separate ėle from ȧtt in ċon. An element ėle′ is called a mediator in Jėle, att:ȧtt, ṡta,

attOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK, if ėle′ is an element in Jċon, ṅatK, and ṅat2 < ṅat < ṅat1.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then ġeoEle is an element in the following contexts:

• Jatt:area, ṡta, attOrd:1, eleOrd:0, ċonK with the mediatorial degree 0 and without medi-

ators;

• Jatt:inch, ṡta, attOrd:2, eleOrd:0, ċonK with the mediatorial degree 1 and the mediator

area;

• Jatt:10, ṡta, attOrd:3, eleOrd:0, ċonK with the mediatorial degree 2 and the mediators

area and inch.

•

An element ėle is called a direct element in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK,
if ėle is an element in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċon, med:0K.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean, 3:2),

and ṡta = (ċon:3). Then the following properties hold:

1. ġeoEle is a direct element in Jatt:area, ṡta, attOrd:1, eleOrd:0K. This means that the

individual ġeoEle has an area in JṡtaK.
2. area is a direct element in Jatt:inch, ṡta, attOrd:2, eleOrd:1K. This means that an area

can be measured in inches in JṡtaK.
3. inch is a direct element in Jatt:10, ṡta, attOrd:3, eleOrd:2K. This means that values of

numerical characteristics of geometric elements measured in inches can be represented in

the decimal system in JṡtaK.
•

A set ṡet is called the direct content in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaKK, if

ṡet is a set of direct elements in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċonK.



System Informatics (Системная информатика), No. 5 (2015) 17

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:10, −2:cm, −1:area, 0:ġeoEle2, 1:triangle, 2:Euclidean, 3:2), ċon3 = (−3:2,

0:ġeoEle1, 3:2), and ṡta = (ċon1:3, ċon2:4, ċon3:2). Then the following properties hold:

• {ġeoEle1, ġeoEle2} is the direct content in Jatt:area, ṡtaK;
• {area} is the direct content in Jatt:inchK and Jatt:cmK in JṡtaK;
• {inch, cm} is the direct content in Jatt:10, ṡtaK;
• {ġeoEle1} is the direct content in Jatt:2, ṡtaK.

•

A set ṡet is called the content in Jatt:ȧtt, ṡta, concOrd:ṅat1, eleOrd:ṅat2, ċonJṡtaK, med:ṅat0K,
if ṡet is a set of elements in Jatt:ȧtt, ṡta, attOrd:ṅat1, eleOrd:ṅat2, ċon, med:ṅat0K.

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:10, −2:inch, −1:area, 0:ġeoEle2, 1:triangle, 2:Riemannian, 3:2), ċon3 = (−3:10,

−2:inch, 0:ġeoEle3, 1:square, 2:Euclidean, 3:2), and ṡta = (ċon1:3, ċon2:4, ċon3:2). Then the

following properties hold:

• {ġeoEle1, ġeoEle2} is the content in Jatt:10, ṡta, attOrd:3, eleOrd:0, med:2K;
• {ġeoEle3} is the content in Jatt:10, ṡta, attOrd:3, eleOrd:0, med:1K;
• {triangle} is the content in Jatt:10, ṡta, concOrd:3, eleOrd:1, med:3K;
• {square} is the content in Jatt:10, ṡta, attOrd:3, eleOrd:1, med:2K.

•

4.4. Classification and interpretation of attributes

Attributes are classified according to their orders.

An attribute ȧtt in Jṡta, attOrd:1K specifies a usual attribute of the ontology of ṡys. Elements

in Jatt:ȧtt, ṡta, attOrd:1K are individuals and concepts in JṡtaK.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:10, −2:inch, −1:area, 0:ġeoEle2, 1:square, 2:Riemannian, 3:3), and ṡta = (ċon1:3,

ċon2:4). Then the following properties hold:

1. The direct attribute area specifies an area of geometric elements in JṡtaK.
2. The individuals ġeoEle1 and ġeoEle2 are elements of the order 0 of the direct attribute

area in JṡtaK. This means that ġeoEle1 and ġeoEle2 has an area in JṡtaK.
3. The concepts triangle and square are elements of the order 1 of the direct attribute area

in JṡtaK. This means that triangles and squares can have an area in JṡtaK.



18 Anureev I.S. Conceptual transition systems

4. The concept spaces Euclidean and Riemannian are elements of the order 2 of the direct

attribute area in JṡtaK. This means that numerical characteristics of geometric elements

from Euclidean and Riemannian spaces can have an area in JṡtaK.
5. The concept space spaces 2 and 3 are elements of the order 3 of the direct attribute area

in JṡtaK. This means that values of numerical characteristics of geometric elements from

two-dimensional and three-dimensional spaces can have an area in JṡtaK.
•

An attribute ȧtt in Jṡta, attOrd:2K specifies an attribute space of the ontology of ṡys . Ele-

ments in Jatt:ȧtt, ṡta, attOrd:2K are direct attributes, individuals and concepts in JṡtaK.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:10, −2:inch, −1:perimeter, 0:ġeoEle2, 1:square, 2:Riemannian, 3:3), and ṡta =

(ċon1:3, ċon2:4). Then the following properties hold:

1. The attribute space inch specifies numerical characteristics of geometric elements mea-

sured in inches in JṡtaK.
2. The direct attributes area and perimeter are elements of the order −11 of the attribute

space inch in JṡtaK. This means that areas and perimeters of geometric elements can be

measured in inches in JṡtaK.
3. The individuals ġeoEle1 and ġeoEle2 are elements of the order 0 of the attribute space inch

in JṡtaK. This means that geometric elements ġeoEle1 and ġeoEle2 can have numerical

characteristics measured in inches in JṡtaK.
4. The concepts triangle and square are elements of the order 1 of the attribute space inch inJṡtaK. This means that numerical characteristics of triangles and squares can be measured

in inches in JṡtaK.
5. The concept spaces Euclidean and Riemannian are elements of the order 2 of the attribute

space inch in JṡtaK. This means that numerical characteristics of geometric elements from

Euclidean and Riemannian spaces can be measured in inches in JṡtaK.
6. The concept space spaces 2 and 3 are elements of the order 3 of the attribute space

inch in JṡtaK. This means that numerical characteristics of geometric elements from

two-dimensional and three-dimensional spaces can be measured in inches in JṡtaK.
•

An attribute ȧtt in Jṡta, attOrd:3K specifies a space of attribute spaces of the ontology of

ṡys. Elements in Jatt:ȧtt, ṡta, attOrd:1K are attribute spaces, direct attributes, individuals and



System Informatics (Системная информатика), No. 5 (2015) 19

concepts in JṡtaK.
Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−3:10, −2:cm, −1:perimeter, 0:ġeoEle2, 1:square, 2:Riemannian, 3:3), and ṡta =

(ċon1:3, ċon2:4). Then the following properties hold:

1. The attribute space space 10 specifies geometric elements, values of numerical character-

istics of which are represented in the decimal system.

2. The attribute spaces inch and cm are elements of the order −2 of the attribute space

space 10 in JṡtaK. This means that values of numerical characteristics of geometric figures

measured in inches can be represented in the decimal system in JṡtaK.
3. The direct attributes area and perimeter are elements of the order −11 of the attribute

space space 10 in JṡtaK. This means that values of areas and perimeters of geometric

elements can be represented in the decimal system in JṡtaK.
4. The individuals ġeoEle1 and ġeoEle2 are elements of the order 0 of the attribute space

space 10 in JṡtaK. This means that values of numerical characteristics of geometric ele-

ments ġeoEle1 and ġeoEle2 can be represented in the decimal system in JṡtaK.
5. The concepts triangle and square are elements of the order 1 of the attribute space space

10 in JṡtaK. This means that values of numerical characteristics of triangles and squares

can be represented in the decimal system in JṡtaK.
6. The concept spaces Euclidean and Riemannian are elements of the order 2 of the attribute

space space 10 in JṡtaK. This means that numerical characteristics of geometric elements

from Euclidean and Riemannian spaces can be represented in the decimal system in JṡtaK.
7. The concept space spaces 10 and 2 are elements of the order 3 of the attribute space

space 10 in JṡtaK. This means that the values of numerical characteristics of geometric

elements from two-dimensional and three-dimensional spaces can be represented in the

decimal system in JṡtaK.
•

An attribute ȧtt in Jṡta, attOrd:ṅatK, where ṅat> 3, is classified and interpreted in the similar

way (by the introduction of spaces of attribute space space and so on.).

4.5. Notes about elements of states

Concepts and attributes are opposite (symmetric in some respects) entities. Concepts gen-

eralize (combine into groups) elements of ċts . In contrast, attributes concretize (divide into



20 Anureev I.S. Conceptual transition systems

sub-elements) elements of ċts .

In addition to specification of elements of ṡys , an individual ėleJṡtaK can be interpreted in

two ways:

• in the attribute context, ėle is interpreted as an attribute in Jṡta, attOrd:0K. In this case,

it specifies a global attribute of ṡys ;

• in the concept context, ėle is interpreted as a concept in Jṡta, concOrd:0K. In this case,

it specifies a concept which has the single instance ėle.

5. Classification of conceptuals

5.1. General principles and definitions

The two-level scheme of classification of conceptuals is used. The upper (first) level is defined

by the maximal order of attributes of a conceptual. This level is described by the notion of

concretization order of a conceptual. The lower (second) level is defined by the set of all element

orders of a conceptual. This level is described by the notion of integral order of a conceptual.

5.1.1. Concretization orders of conceptuals

The number 0 is called an order in JċonK, if the minimal order in ċon is greater than or

equal to 0. A number ṅat is called an order in JċonK, if −ṅat is a minimal order in ċon.

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon2 = (−2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2), ċon3 = (−1:area, 0:ġeoEle1,

1:triangle, 2:Euclidean, 3:2), ċon4 = (0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2), ċon5 =

(1:triangle, 2:Euclidean, 3:2), ċon6 = (2:Euclidean, 3:2), and ċon7 = (3:2). Then the following

properties hold:

1. The conceptuals ċon1, ċon2, ċon3 have the orders 3, 2, 1, respectively.

2. The conceptuals ċon4, ċon5, ċon6, ċon7 have the order 0.

•

Conceptuals of the order ṅat concretizes conceptuals of the orders which are less than ṅat.

They define the special kinds of such conceptuals and are used to classify them. Concretization

is performed by attributes of the order ṅat and their values. Therefore, the order of a conceptual

is also called the concretization order of the conceptual.

5.1.2. Integral orders of conceptuals



System Informatics (Системная информатика), No. 5 (2015) 21

A set ṡet is called an integral order in JċonK, if ṡet is a set of all element orders in JċonK.
Let intOrd be a set of integral orders.

Proposition 8. A conceptual ċon has the single integral order.

Proof. This follows from the definition of the integral order of a conceptual. 2

Example. Let ċon1 = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2),

ċon1 = (−3:10, −1:area, 1:triangle, 3:2), ċon1 = (−2:inch, −1:area, 2:Euclidean, 3:2). Then

i̇ntOrdJċon1K = {−3, −2, −1, 0, 1, 2, 3}, i̇ntOrdJċon2K = {−3, −1, 1, 3}, and i̇ntOrdJċon3K
= {−2, −1, 2, 3}. •

A set ṡet is called a refined integral order in JċonK, if ṡet is a result of replacement of zero

or more element orders ėleOrdJċonK in the set i̇ntOrdJċonK by objects ėleOrd:ċon(ėleOrd). A

refined integral order in ċon refines an integral order in ċon, providing information on some

elements of ċon with their orders. Let ċon:i̇ntOrd denote a conceptual ċon which has the

refined integral order i̇ntOrd.

Example. Let ċon = (−3:10, −2:inch, −1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2).

Then {−3, −2, −1, 0, 1, 2, 3}, {−3, −2:inch, −1, 0, 1:triangle, 2, 3} and {−3:10, −2:inch,

−1:area, 0:ġeoEle1, 1:triangle, 2:Euclidean, 3:2} are refined integral orders in JċonK. •

Proposition 9. A conceptual ċon has a finite set of refined integral orders.

Proof. This follows from the definition of the refined integral order and the finite number

of element orders of conceptuals. 2

Proposition 10. The integral order in JċonK is a refined integral order in JċonK.
Proof. This follows from the definition of the refined integral order of a conceptual. 2

Conceptuals of the same concretization order are classified according to their integral orders.

Each integral order defines a separate kind of conceptuals.

Conceptuals allow to classify ontological elements in detail. Each kind of conceptuals spec-

ifies a separate kind of ontological elements.

5.2. Correlation between ontological elements

and conceptuals of the order 0

In this section conceptuals of the order 0 is classified according to their integral orders

and kinds of conceptuals of this classification are correlated with the corresponding kinds of

ontological elements.

A conceptual ċon:{0} specifies the individual ċon(0).



22 Anureev I.S. Conceptual transition systems

Example. The conceptual (0:ġeoEle) specifies the geometric element ġeoEle. •

A conceptual ċon:{0, 1} specifies the individual ċon(0) from the concept ċon(1).

Example. The conceptual (0:ġeoEle, 1:triangle) specifies the triangle ġeoEle. •

A conceptual ċon:{1} specifies the concept ċon(1).

Example. A conceptual (1:triangle) specifies triangles. •

A conceptual ċon:{1, 2} specifies the concept ċon(1) from the concept space ċon(2).

Example. The conceptual (1:triangle, 2:Euclidean) specifies triangles from Euclidean space.

•

A conceptual ċon:{2} specifies the concept space ċon(2).

Example. The conceptual (2:Euclidean) specifies Euclidean space. •

A conceptual ċon:{0, 2} specifies the individual ċon(0) from the concept space ċon(2).

Example. The conceptual (0:ġeoEle, 2:Euclidean) specifies the geometric element ġeoEle

from Euclidean space. •

A conceptual ċon:{0, 1, 2} specifies the individual ċon(0) from the concept ċon(1) from the

concept space ċon(2).

Example. The conceptual (0:ġeoEle, 1:triangle, 2:Euclidean) specifies the triangle ġeoEle

from Euclidean space. •

Correlation between other kinds of conceptuals of the order 0 and the corresponding kinds

of ontological elements is performed in a similar way. For example, a conceptual ċon:{0, 1, 2,

3} specifies the individual ċon(0) from the concept ċon(1) from the concept space ċon(2) from

the concept space space ċon(3).

Example. The conceptual (0:ġeoEle, 1:triangle, 2:Euclidean, 3:2) specifies the triangle

ġeoEle from two-dimensional Euclidean space. •

5.3. Correlation between ontological elements

and conceptuals of the order 1

In this section conceptuals of the order 1 is classified according to their integral orders

and kinds of conceptuals of this classification are correlated with the corresponding kinds of

ontological elements.

A conceptual ċon:{-1} specifies the attribute ċon(-1).

Example. The conceptual (−1:area) specifies an area of geometric elements. •

A conceptual ċon:{-1, 0} specifies the attribute ċon(-1) of the individual ċon(0).



System Informatics (Системная информатика), No. 5 (2015) 23

Example. The conceptual (−1:area, 0:ġeoEle) specifies the area of the geometric element

ġeoEle. •

A conceptual ċon:{-1, 0, 1} specifies attribute ċon(-1) of the individual ċon(0) from the

concept ċon(1).

Example. The conceptual (−1:area, 0:ġeoEle, 1:triangle) specifies an area of the triangle

ġeoEle. •

A conceptual ċon:{-1, 1} specifies attribute ċon(-1) of the concept ċon(1).

Example. The conceptual (−1:area, 1:triangle) specifies areas of triangles. •

A conceptual ċon:{-1, 0, 1, 2} specifies attribute ċon(-1) of the individual ċon(0) from the

concept ċon(1) from the concept space ċon(2).

Example. The conceptual (−1:area, 0:ġeoEle, 1:triangle, 2:Euclidean) specifies the area of

the triangle ġeoEle from Euclidean space. •

A conceptual ċon:{-1, 1, 2} specifies attribute ċon(-1) of the concept ċon(1) from the

concept space ċon(2).

Example. The conceptual (−1:area, 1:triangle, 2:Euclidean) specifies areas of triangles

from Euclidean space. •

A conceptual ċon:{-1, 0, 2} specifies attribute ċon(-1) of the individual ċon(0) from the

concept space ċon(2).

Example. The conceptual (−1:area, 0:ġeoEle, 2:Euclidean) specifies the area of the geo-

metric element ġeoEle from Euclidean space. •

A conceptual ċon:{-1, 2} specifies attribute ċon(-1) of the concept space ċon(2).

Example. The conceptual (−1:area, 2:Euclidean) specifies areas of geometric elements

from Euclidean space. •

Correlation between other kinds of conceptuals of the order 1 and the corresponding kinds

of ontological elements is performed in a similar way.

5.4. Correlation between ontological elements

and conceptuals of the order 2

In this section conceptuals of the order 2 is classified according to their integral orders

and kinds of conceptuals of this classification are correlated with the corresponding kinds of

ontological elements.

A conceptual ċon:{-2, -1} specifies the attribute ċon(-1) in the attribute space ċon(-2).



24 Anureev I.S. Conceptual transition systems

Example. The conceptual (−2:inch, −1:area) specifies areas in inches. •

A conceptual ċon:{-2, -1, 0} specifies the attribute ċon(-1) of the individual ċon(0) in the

attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 0:ġeoEle) specifies the area of the geometric

element ġeoEle in inches. •

A conceptual ċon:{-2, -1, 0, 1} specifies the attribute ċon(-1) of the individual ċon(0) from

the concept ċon(1) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 0:ġeoEle, 1:triangle) specifies the area of the

triangle ġeoEle in inches. •

A conceptual ċon:{-2, -1, 1} specifies the attribute ċon(-1) of the concept ċon(1) in the

attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 1:triangle) specifies areas of triangles in

inches. •

A conceptual ċon:{-2, -1, 0, 1, 2} specifies the attribute ċon(-1) of the individual ċon(0)

from the concept ċon(1) from the concept space ċon(2) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean) specifies

the area of the triangle ġeoEle from Euclidean space in inches. •

A conceptual ċon:{-2, -1, 1, 2} specifies the attribute ċon(-1) of the concept ċon(1) from

the concept space ċon(2) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 1:triangle, 2:Euclidean) specifies areas of

triangles from Euclidean space in inches. •

A conceptual ċon:{-2, -1, 0, 2} specifies the attribute ċon(-1) of the individual ċon(0) from

the concept space ċon(2) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 0:ġeoEle, 2:Euclidean) specifies the area of

the geometric element ġeoEle from Euclidean space in inches. •

A conceptual ċon:{−2, −1, 2} specifies the attribute ċon(-1) of the concept space ċon(2)

in the attribute space ċon(-2).

Example. The conceptual (−2:inch, −1:area, 2:Euclidean) specifies areas of geometric

elements from Euclidean space in inches. •

A conceptual ċon:{-2, 0} specifies the individual ċon(0) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, 0:ġeoEle) specifies the attributes of the geometric

element ġeoEle measured in inches. •



System Informatics (Системная информатика), No. 5 (2015) 25

A conceptual ċon:{-2, 0, 1} specifies the individual ċon(0) from the concept ċon(1) in the

attribute space ċon(-2).

Example. The conceptual (−2:inch, 0:ġeoEle, 1:triangle) specifies the attributes of the

triangle ġeoEle measured in inches. •

A conceptual ċon:{-2, 1} specifies the concept ċon(1) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, 1:triangle) specifies attributes and individuals of tri-

angles measured in inches. •

A conceptual ċon:{−2, 1, 2} specifies the concept ċon(1) from the concept space ċon(2) in

the attribute space ċon(-2).

Example. The conceptual (−2:inch, 1:triangle, 2:Euclidean) specifies attributes and indi-

viduals of triangles from Euclidean space measured in inches. •

A conceptual ċon:{-2, 2} specifies the concept space ċon(2) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, 2:Euclidean) specifies attributes, individuals and kinds

of geometric figures from Euclidean space measured in inches. •

A conceptual ċon:{-2, 0, 2} specifies the individual ċon(0) from the concept space ċon(2)

in the attribute space ċon(-2).

Example. The conceptual (−2:inch, 0:ġeoEle, 2:Euclidean) specifies the geometric element

ġeoEle and its attributes from Euclidean space measured in inches. •

A conceptual ċon:{-2, 0, 1, 2} specifies the individual ċon(0) from the concept ċon(1) from

the concept space ċon(2) in the attribute space ċon(-2).

Example. The conceptual (−2:inch, 0:ġeoEle, 1:triangle, 2:Euclidean) specifies the triangle

ġeoEle and its attributes from Euclidean space measured in inches. •

Correlation between other kinds of conceptuals of the order 2 and the corresponding kinds

of ontological elements is performed in a similar way.

5.5. Correlation between ontological elements

and conceptuals of the order 3 or higher

Correlation between other kinds of conceptuals of the order 3 or higher and the corresponding

kinds of ontological elements is performed in a similar way (by the introduction of the attribute

space space and so on.).

Example. The conceptual (−3:10, −2:inch, −1:area, 0:ġeoEle, 1:triangle, 2:Euclidean,

3:2) specifies the area of the triangle ġeoEle from two-dimensional Euclidean space measured



26 Anureev I.S. Conceptual transition systems

in inches in the decimal system. •

6. Modelling of ontological elements

The ontological elements which are directly represented in terms of elements and conceptuals

of states were considered in previous sections. The ontological elements which are not directly

represented in these terms are modelled in this section.

6.1. Relations and their instances

Binary relations are modelled by direct concepts, and their instances are modelled by ele-

ments of the order 0 of these concepts, represented by pairs of elements.

Relations of the arity ṅat are modelled by direct concepts, and their instances are modelled

by elements of the order 0 of these concepts, represented by tuples of the length ṅat.

Relations of the variable arity are modelled by direct concepts, and their instances are

modelled by elements of the order 0 of these concepts, represented by tuples of the variable

length.

6.2. Types and domains

Types are modelled by direct concepts, and their values are modelled by elements of the

order 0 of these concepts.

Domains as the special kind of types are also modelled by direct concepts, and their values

are modelled by elements of the order 0 of these concepts.

Types of attributes of the order ṅat are modelled by the special attribute type of the order

ṅat + 1. Values of this attribute are types modelled by direct concepts.

6.3. Inheritance

The usual inheritance relation on concepts is generalized to the inheritance relation on

elements of the same order in JṡtaK. It is modelled by the special direct concept inherits, and

their instances are modelled by elements of the order 0 of the concept inherits, represented by

triples of elements. Elements of the triple specify the inheriting element, the inherited element

and their order, respectively.

An element ėleJṡtaK inherits from ėle ′JṡtaK in Jṡta, i̇ntK, if ṡta(0:(ėle, ėle′, i̇nt), 1:inherits) ̸=

ω.

Inheritance on elements redefines semantics of conceptuals sem as follows:



System Informatics (Системная информатика), No. 5 (2015) 27

• if ṡta(ċon) ̸= ω, then sem(ċon, ṡta) = ṡta(ċon);

• if

– ṡta(ċon) = ω,

– i̇nt is a maximal order in JċonK,
– ṡet is a set of ėleJṡtaK such that ċon(i̇nt) inherits from ėle in Jṡta, i̇ntK,
– ṡet ̸= ∅,

– sem(ċon(i̇nt ← ėle), ṡta) = sem(ċon(i̇nt ← ėle′), ṡta) for all ėle, ėle′ ∈ ṡet,

then sem(ċon, ṡta) = sem(ċon(i̇nt ← ėle), ṡta), where ėle ∈ ṡet ;

• otherwise, sem(ċon, ṡta) = ω.

The special case of inheritance on direct concepts is defined. A concept ḋirConcJṡtaK inherits

from a concept ḋirConc′JṡtaK in JṡtaK, if ḋirConc inherits from ḋirConc ′ in Jṡta, 1K.
The inheritance relation on elements of the same order in JṡtaK is generalized to the inheri-

tance relation on ordered structures of elements of the same length in JṡtaK. The corresponding

elements of these structures have the same order. This relation is modelled by the special direct

concept inheritsStr, and their instances are modelled by elements of the order 0 of this concept,

represented by triples of sorted structures of the same length. The elements of the triple specify

the ordered structures of inheriting elements, inherited elements and their orders, respectively.

An element ȯrdStr1 inherits from ȯrdStr2 in Jṡta, ȯrdStrK, if the following properties hold:

• ȯrdStr = (i̇nt1, ..., i̇ntṅat);

• i̇nt1 < . . . < i̇ntṅat;

• len(ȯrdStr1) = len(ȯrdStr2) = ṅat ;

• sem((0:(ȯrdStr1, ȯrdStr2, ȯrdStr), 1:inheritsStr), ṡta) ̸= ω.

Inheritance on ordered structures redefines semantics of conceptuals sem:

• if ṡta(ċon) ̸= ω, then sem(ċon, ṡta) = ṡta(ċon);

• if

– ṡta(ċon) = ω,

– i̇nt1 < . . . < i̇ntṅat are element orders in ċon,

– for all i̇nt if i̇nt ≥ int1, and i̇nt is an element order in ċon, then i̇nt coincides with

one of the numbers i̇nt1, ..., i̇ntṅat,

– ṡet is a set of ėleJṡtaK such that (ċon(i̇nt1), . . ., ċon(i̇ntṅat)) inherits from ėle in Jṡta,
(i̇nt1, . . ., i̇ntṅat)K,

– ṡet ̸= ∅,



28 Anureev I.S. Conceptual transition systems

– for all ėle, ėle′ ∈ ṡet
sem(ċon(i̇nt1 ← ėle(int1), . . ., i̇ntṅat ← ėle(intṅat)), ṡta) =
sem(ċon(i̇nt1 ← ėle′(int1), . . ., i̇ntṅat ← ėle′(intṅat)), ṡta),

then sem(ċon, ṡta) = sem(ċon(i̇nt1 ← ėle(int1), . . ., i̇ntṅat ← ėle(intṅat)), ṡta), where

ėle ∈ ṡet ;

• otherwise, sem(ċon, ṡta) = ω.

7. Generic conceptuals

A generic conceptual defines a set of conceptuals satisfying a certain template and sets the

default value for these conceptuals. Conceptuals from this set are called instances of the generic

conceptual. The template of the generic conceptual is defined by its form.

7.1. The main definitions

Let * ∈ ato. A conceptual ċonJṡtaK is called a generic conceptual in JṡtaK, if there exists

ėleOrd such that ċon(ėleOrd) ∈ {*, (*, ėle2), (*, ėle2, ėle3), (*, *, ėle3)}. The element ele of

the form ċon(ėleOrd) from this definition is called a substitution place in Jċon, ṡta, ėleOrdK.
Let genCon and pla be sets of generic conceptuals and substitution places, respectively. The

number ėleOrd is called an order in Jṗla, ċon, ṡtaK. The elements ėle2 and ėle3 are called a

type and parameter in Jṗla, ċon, ṡta, ėleOrdK, respectively. Let type and par be sets of types

and parameters in Jṗla, ċon, ṡta, ėleOrdK, respectively.

A conceptual ġenCon is called partially typed in JṡtaK, if there exist ṗla, ṫype and ėleOrd

such that ṗla is a substitution place in JġenCon, ṡta, ėleOrdK, and ṫype is a type in Jṗla, ġenCon,

ṡta, ėleOrdK.
A conceptual ġenCon is called typed in JṡtaK, if for all ṗla and ėleOrd , if ṗla is a substitution

place in JġenCon, ṡta, ėleOrdK, then there exists ṫype such that ṫype is a type in Jṗla, ġenCon,

ṡta, eleOrdK.
A conceptual ġenCon is called parametric in JṡtaK, if there exist ṗla, ṗar and ėleOrd such

that ṗla is a substitution place in JġenCon, ṡta, ėleOrdK, and ṗar is a parameter in Jṗla, ġenCon,

ṡta, ėleOrdK.
A conceptual ċon is called an instance in JġenCon, ṡtaK, if the following properties hold:

• if ġenCon(i̇nt) is not a substitution place in JġenCon, ṡta, i̇ntK, then ċon(i̇nt) =

ġenCon(i̇nt);

• if ġenCon(i̇nt) is a substitution place in JġenCon, ṡta, i̇ntK, then ċon(i̇nt) is an element



System Informatics (Системная информатика), No. 5 (2015) 29

in Jṡta, i̇ntK;
• if ġenCon(i̇nt) ∈ {(*, ṫype), (*, ṫype, ṗar)}, then ċon(i̇nt) is an element in Jconc:ṫype,

ṡta, concOrd:1, eleOrd:0K;
• if ṗar is a parameter in Jṗla1, ġenCon, ṡta, ėleOrd1K and Jṗla2, ġenCon, ṡta, ėleOrd2K,

then ċon(ėleOrd1) = ċon(ėleOrd2).

A CTS cts is called a CTS in JgenCon:K, if the following properties hold:

• (the consistency property) if ġenCon1 ̸= ġenCon2, then there is no ċon such that ċon

is an instance of ġenCon1 and ġenCon2 in JṡtaK;
• semantics of conceptuals sem is redefined as follows:

– if ṡta(ċon) ̸= ω, then sem(ċon, ṡta) = ṡta(ċon);

– if ṡta(ċon) = ω, and ċon is an instance in JġenCon, ṡtaK, then sem(ċon, ṡta) =

ṡta(ġenCon);

– otherwise, sem(ċon, ṡta) = ω.

7.2. Examples of generic conceptuals

A conceptual ġenCon:{-1, 0:*, 1} specifies the property that the value of the attribute

ġenCon(-1) of individuals from the concept ġenCon(1) is equal to ṡta(ġenCon) in JṡtaK, if it is

not defined explicitly.

Example. The conceptual ġenCon:{−1:area, 0:*, 1:triangle} specifies the property that

the area of triangles is equal to ṡta(ġenCon) in JṡtaK, if it is not defined explicitly. •

A conceptual ġenCon:{-1, 0:*} specifies the property that the value of the attribute ġenCon(-

1) of individuals is equal to ṡta(ġenCon) in JṡtaK, if it is not defined explicitly.

Example. The conceptual ġenCon:{−1:area, 0:*} specifies the property that the area of

geometric elements is equal to ṡta(ġenCon) in JṡtaK, if it is not defined explicitly. •

A conceptual ġenCon:{0:*, 1} specifies the property that the value of individuals from the

concept ġenCon(1) is equal to ṡta(ġenCon) in JṡtaK, if it is not defined explicitly.

Example. The conceptual ġenCon:{0:*, 1:triangle} specifies the property that the value of

triangles is equal to ṡta(ġenCon) in JṡtaK, if it is not defined explicitly. What is the value of a

triangle depends on interpretation. •

7.3. Classification of ontological elements and their properties

based on generic conceptuals



30 Anureev I.S. Conceptual transition systems

Generic conceptuals together with attributes allow to classify ontological elements and their

properties in more detail.

A conceptual ġenCon:{-2:type, -1, 0*, 1} specifies the property that the type of the attribute

ġenCon(-1) of individuals from the concept ġenCon(1) is equal to ṡta(ġenCon) in JṡtaK, if it is

not defined for individuals explicitly.

Example. The conceptual ġenCon:{-2:type, −1:area, 0:*, 1:triangle} specifies the property

that the type of the attribute area of triangles is equal to ṡta(ġenCon) in JṡtaK, if it is not

defined for triangles explicitly. •

A conceptual ġenCon:{-2:type, -1, 0:*} specifies the property that the type of the attribute

ġenCon(-1) of individuals is equal to ṡta(ġenCon) in JṡtaK, if it is not defined for individuals

explicitly.

Example. The conceptual ġenCon:{-2:type, −1:area, 0:*} specifies the property that the

type of the attribute area of geometric elements is equal to ṡta(ġenCon) in JṡtaK, if it is not

defined for geometric elements explicitly. •

A conceptual ġenCon:{-2:type, 0:*} specifies the property that the type of individuals is

equal to ṡta(ġenCon) in JṡtaK, if it is not defined for individuals explicitly.

Example. The conceptual ġenCon:{-2:type, 0:*} specifies the property that the type of

geometric elements is equal to ṡta(ġenCon) in JṡtaK, if it is not defined for geometric elements

explicitly. •

A conceptual ġenCon:{-2:type, 0:*, 1} specifies the property that the type of individuals

from the concept ġenCon(1) is equal to ṡta(ġenCon) in JṡtaK, if it is not defined for such

individuals explicitly.

Example. The conceptual ġenCon:{-2:type, 0:*, 1:triangle} specifies the property that the

type of triangles is equal to ṡta(ġenCon) in JṡtaK, if it is not defined for triangles explicitly. •

8. Justification of requirements for conceptual transition systems

In this section, we establish that CTSs meet the requirements stated in section 1:

1. The formalism describes the conceptual structure of the specified system. The conceptual

structure of sys is described by elements (attributes, concepts, individuals) and, in more

detail, usual and generic conceptuals of states of ċts.

2. The formalism describes the content of the conceptual structure of the specified system, i.

e. it describes the specified system in the context of the conceptual structure. The content



System Informatics (Системная информатика), No. 5 (2015) 31

of the conceptual structure of ṡys is described by conceptual states of ċts.

3. The formalism describes the change of the conceptual structure of the specified system.

The change of the conceptual structure of ṡys is described by the transition relation traRel

on conceptual states of ċts which specify conceptual structures of ṡys with different sets

of ontological elements.

4. The formalism describes the change of the content of the conceptual structure of the

specified system, i. e. it describes the change of the specified system in the context of

the conceptual structure. The change of the content of the conceptual structure of ṡys is

described by the transition relation traRel on conceptual states of ċts which specify the

same conceptual structure of ṡys . In fact, the distinction between requirements 3 and

4 is relative, for conceptuals allow to define classifications of ontological elements with

different granularity.

5. The formalism is quite universal to specify typical ontological elements (concepts, at-

tributes, concept instances, relations, relation instances, individuals, types, domains, and

so on.). Specification of typical ontological elements is presented in sections 4 and 6.

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds. Classification of ontological elements

based on the two-level scheme is presented in section 5.

7. The formalism is based on the conception ’state – transition’ of the usual transition sys-

tems, keeping their simplicity and universality and adding a conceptual ’filling’. CTSs are

the special kind of transition systems in which transitions are defined in the ordinary way,

and states are quite simple functions specifying the conceptual structure of the specified

systems. Therefore, they keep simplicity and universality of the usual transition systems.

8. The formalism supports reflection of any order, i. e. allows to specify: the system (re-

flection of the order 0), the specification of the system (reflection of the order 1), the

specification of the specification of the system (reflection of the order 2) and so on. Spec-

ifications of the higher order (with reflection of the higher order) impose restrictions on

the specifications of the lower order (with reflection of the lower order). The order of

reflection in the specification of ṡys is defined by the maximal (concretization) order of

conceptuals in states of ċts , i. e. the maximal order of attributes in states of ċts . The

formal description of this property requires additional definitions which are given below.



32 Anureev I.S. Conceptual transition systems

We extend the (concretization) order of conceptuals on states, the transition relation and

CTSs.

A number ṅat is called an order in JṡtaK, if the following properties hold:

• there is no ċonJṡtaK such that the order in JċonK is greater than ṅat ;

• there exists ċonJṡtaK such that ṅat is an order in JċonK.
A state ṡta is called admissible in JċtsK, if there exists ṡta′ such that traRel(ṡta, ṡta′), or

traRel(ṡta′, ṡta).

A number ṅat is called an order in JtraRelK, if the following properties hold:

• there is no ṡta such that ṡta is admissible in JċtsK, and the order in JṡtaK is greater than

ṅat ;

• there exists ṡta such that ṡta is admissible in JċtsK, and ṅat is an order in JṡtaK.
A number ṅat is called an order in JċtsK, if ṅat is an order in JtraRelJċtsKK.
A system ċts is called a specification in Jṡys, ṅat0K, if ṅat0 is an order in JċtsK. A number

nat0 is called an order (of specification or reflection) in Jṡys, ċtsK.
States, the transition relation and CTSs of greater orders concretize states, the transition

relation and CTSs of lower orders, define the special their kinds and are used to classify them.

Thus, the requirements stated in section 1 are met for CTSs.

9. Related formalisms

We compare CTSs with three related formalisms: abstract state machines [1, 2], ontological

transition systems [5] and domain-specific transition systems [7]. The comparison is based on

the requirements stated in section 1.

9.1. Abstract state machines

Abstract state machines [1, 2] are the special kind of transition systems in which transitions

are defined in the ordinary way, and states are algebraic systems. The application of abstract

state machine to specifying various systems can be found in [8]. In contrast to CTSs which

have no implementation language, abstract state machines have two implementation languages:

ASML [9] and XASM [10].

We consider the fulfillment of the requirements for this formalism:

1. The formalism describes the conceptual structure of the specified system. The conceptual

structure of the specified system is modelled by the appropriate choice of symbols of



System Informatics (Системная информатика), No. 5 (2015) 33

the signature of an algebraic system. Thus, both abstract state machines and CTSs

describe the conceptual structure of specified systems, but CTSs make it by more natural

ontological way.

2. The formalism describes the content of the conceptual structure of the specified system.

The content of the conceptual structure of the specified system is modelled by the inter-

pretation of signature symbols in a particular state.

3. The formalism describes the change of the conceptual structure of the specified system.

The change of the conceptual structure of the specified system is described by the tran-

sition relation on algebraic structures of different signatures.

4. The formalism describes the change of the content of the conceptual structure of the

specified system. The change of the content of the conceptual structure of the specified

system is described by the transition relation on algebraic structures of the same signature.

5. The formalism is quite universal to specify typical ontological elements. In contrast to

CTSs, typical ontological elements are not naturally specified by abstract state machines.

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds. In contrast to CTSs, abstract state

machines do not allow to classify naturally ontological elements and define their new

kinds and subkinds.

7. The formalism is based on the conception ’state – transition’ of the usual transition sys-

tems, keeping their simplicity and universality and adding a conceptual ’filling’. Abstract

state machines are the special kind of transition systems in which transitions are defined

in the usual way, and states are functions of algebraic systems. Therefore, they keep

simplicity and universality of the usual transition systems sufficiently. The difference

between abstract state machines and CTSs consists in that they are based on different

(ontological and algebraic, respectively) approaches to the definition of states.

8. The formalism supports reflection of any order. In contrast to CTSs, abstract state

machines do not support reflection of any order in natural way.

9.2. Ontological transition systems

Ontological transition systems [5] are the special kind of labelled transition systems in which

transitions are defined in the usual way, transition labels are actions which change states, and

states are ontology content retrieval functions. The ontology in ontological transition systems



34 Anureev I.S. Conceptual transition systems

are defined as a set of concepts and relations on the universe of objects. The content of a

concept is defined as a set of sequences of objects from the universe, and the content of a

relation is defined as a set of pairs of sequences of objects form the universe. In contrast to

CTSs, ontological transition systems have their associated notation language OTSL [5, 6] which

specifies states and transition actions.

We consider the fulfillment of the requirements for this formalism:

1. The formalism describes the conceptual structure of the specified system. Ontological

transition systems describe the conceptual structure of the specified system by concepts

and relations.

2. The formalism describes the content of the conceptual structure of the specified system.

Ontological transition systems describe the content of the conceptual structure of the

specified system by ontology content retrieval functions.

3. The formalism describes the change of the conceptual structure of the specified system. In

contrast to CTSs, ontological transition sytems do not change the conceptual structure

of the specified system.

4. The formalism describes the change of the content of the conceptual structure of the

specified system. The change of the content of the conceptual structure of the specified

system is described by actions of the corresponding ontological transition system.

5. The formalism is quite universal to specify typical ontological elements. In contrast to

CTSs, only some typical ontological elements are naturally specified by ontological tran-

sition systems.

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds. In contrast to CTSs, a set of kinds

of ontological elements which are naturally defined by ontological transition systems is

restricted.

7. The formalism is based on the conception ’state – transition’ of the usual transition sys-

tems, keeping their simplicity and universality and adding a conceptual ’filling’. Ontolog-

ical transition systems are the special kind of transition systems in which transitions are

defined in the usual way, and states are quite simple ontology content retrieval functions.

Therefore, they keep simplicity and universality of the usual transition systems suffi-

ciently. The language of specification of ontological transition systems OTSL includes a

specific set of actions that restrict the transition relation. Therefore, it is not as much



System Informatics (Системная информатика), No. 5 (2015) 35

universal as CTSs.

8. The formalism supports reflection of any order. In contrast to CTSs, ontological transition

systems do not support reflection.

9.3. Domain-specific transition systems

Domain-specific transition systems [7] are the special kind of transition systems in which

states are defined by parametric forms and their values, and transitions are defined by the

special kind of these forms – transition rules. A parametric form is characterized by a sample,

evaluated and quoted parameters, a parameter constraint, a return value constraint and rules

of propagation of indeterminate values of parameters. Instances of the form are defined by

the pattern matching algorithm. Applying transition rules are described by the algorithms of

pattern matching and rule execution.

We consider the fulfillment of the requirements for this formalism:

1. The formalism describes the conceptual structure of the specified system. The conceptual

structure of the specified system is described by the special kind of domain-specific tran-

sition systems – ontological domain-specific transition systems. Concepts in such systems

are modelled by forms which represent characteristic functions of these concepts and de-

fine their content. The sample of a rule of such system is represented by a parameter,

and the parameter constraint defines the concept for which values of the parameter are

instances.

2. The formalism describes the content of the conceptual structure of the specified system.

Ontological domain-specific transition systems describe the content of the conceptual

structure of the specified system by concepts.

3. The formalism describes the change of the conceptual structure of the specified system.

In contrast to CTSs, domain-specific transition systems do not change the conceptual

structure of the specified system.

4. The formalism describes the change of the content of the conceptual structure of the

specified system. The change of the content of the conceptual structure of the specified

system is described by rules of the corresponding domain-specific transition system.

5. The formalism is quite universal to specify typical ontological elements. In contrast to

CTSs, only concepts and their instances are naturally specified by ontological domain-

specific transition systems.



36 Anureev I.S. Conceptual transition systems

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds. In contrast to CTSs, domain-specific

transition systems do not allow to classify ontological elements and define their new kinds.

7. The formalism is based on the conception ’state – transition’ of the usual transition sys-

tems, keeping their simplicity and universality and adding a conceptual ’filling’. Domain-

specific transition systems are the special kind of transition systems in which transitions

are defined by sets of transition rules, the quite general pattern matching algorithm which

specifies applicability of these rules, and the specific rule execution algorithm, and states

are functions on forms with specific attributes. Therefore, domain-specific transition sys-

tems do not keep simplicity and universality of the usual transition systems sufficiently.

8. The formalism supports reflection of any order. In contrast to CTSs, domain-specific

transition systems do not support reflection.

10. Conclusion

In the paper, the main definitions of the theory of CTSs were given, classifications for

elements of states of CTSs and for conceptuals and their associated ontological elements were

developed, generalization of conceptuals which allows to make more comprehensive classification

of ontological elements – generic conceptuals – was proposed.

We plan to develop the special kinds of CTSs concretizing the transition relation, and the

language of specification of CTSs that would describe the transition relation concretizations

which are important for practical purposes.

Development of formal methods based on this language to solve problems of designing and

prototyping software systems as well as specification of operational and axiomatic semantics

of programming languages is an important application of CTSs. In the case of specification

of operational semantics of a programming language, a CTS specifies the abstract machine of

the language. In the case of specification of axiomatic semantics of a programming language, a

CTS specifies a generator of verification conditions for programs in the language, based on its

axiomatic semantics.

We hope that the use of the ontological approach will reduce the gap between the great

potential of formal methods and, with rare exceptions, toy examples of their application for

solving the above problems [11].

Because of their simplicity and universality, CTSs can be also used for classification and



System Informatics (Системная информатика), No. 5 (2015) 37

formalization of concepts, properties and algorithms in the field of ontology evolution [12–15],

as well as designing and prototyping tools to support ontology evolution [16].

References

1. Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information

and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

2. Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford

University Press, 1995. P. 9-36.

3. Anureev I.S. Operational Ontological Approach to Formal Programming Language Specification

// Programming and Computer Software. 2009. Vol. 35. N 1. P. 35-42.

4. Gruber T.R. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. Interna-

tional Journal Human-Computer Studies. 43(5-6). 1995. P. 907-928.

5. Anureev I.S. Ontological Transition Systems // Bulletin of the Novosibirsk Computing Center,

Series Computer Science. 2007. Vol. 26. P. 1-17.

6. Anureev I.S. A Language of Actions in Ontological Transition Systems // Bulletin of the Novosi-

birsk Computing Center, Series Computer Science. 2007. Vol. 26. P. 19-38.

7. Anureev I.S. Domain-Specific Transition Systems and their Application to a Formal Definition of a

Model Programming Language // Bulletin of the Novosibirsk Computing Center, Series Computer

Science. 2014. Vol. 34. P. 23–42.

8. Huggins J. Abstract State Machines Web Page. URL: http://www.eecs.umich.edu/gasm (accessed:

01.09.2015).

9. AsmL: The Abstract State Machine Language. Reference Manual. 2002. URL:

http://research.microsoft.com/fse/asml/doc/AsmL2 Reference.doc (accessed: 01.09.2015).

10. XasM — An Extensible, Component-Based Abstract State Machines Language. URL:

http://xasm.sourceforge.net/XasmAnl00/XasmAnl00.html (accessed: 01.09.2015).

11. Parnas D.L. Really Rethinking Formal Methods // Computer. IEEE Computer Society. 2010. Vol.

43 (1). P. 28-34.

12. Haase P., Stojanovic L. Consistent Evolution of OWL Ontologies. In Proceedings of the 2nd Eu-

ropean Semantic Web Conference. 2005.

13. Heflin J., Hendler J., Luke S.: Coping with Changing Ontologies in a Distributed Environment.

In Proceedings of the Workshop on Ontology Management of the 16th National Conference on

Artificial Intelligence. 1999. P. 74-79.

14. Noy N.F., Klein M.: Ontology Evolution: Not the Same as Schema Evolution. Knowledge and

Information Systems. 6(4). 2004. P. 428-440.

15. Stojanovic L., Maedche A., Stojanovic N., Studer R.: Ontology Evolution as Reconfiguration-

Design Problem Solving. In Proceedings of the 2nd International Conference on Knowledge Cap-

ture. 2003. P. 162-171.

16. Haase P., Sure Y.: D3.1.1.b State of the Art on Ontology Evolution. 2004. URL:



38 Anureev I.S. Conceptual transition systems

http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/SEKT-D3.1.1.b.pdf (accessed:

01.09.2015).


