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Formalisms for conceptual design

of closed information systems*

Anureev LS. (Institute of Informatics Systems)

A closed information system is an information system such that its environment does
not change it, and there is an information transfer from it to its environment and from its
environment to it. In this paper two formalisms (information query systems and conceptual
configuration systems) for abstract unified modelling of the artifacts (concept sketches and
models) of the conceptual design of closed information systems, early phase of informa-
tion systems design process, are proposed. Information query systems defines the abstract
unified information model for the artifacts, based on such general concepts as state, infor-
mation query and answer. Conceptual configuration systems are a formalism for concep-
tual modelling of information query systems. They defines the abstract unified conceptual
model for the artifacts. The basic definitions of the theory of conceptual configuration
systems are given. These systems were demonstrated to allow to model both typical and
new kinds of ontological elements. The classification of ontological elements based on such
systems is described. A language of conceptual configuration systems is defined.

Keywords: closed information system, information query system, conceptual structure,
ontology, ontological element, conceptual, conceptual state, conceptual configuration, con-

ceptual configuration system, conceptual information query model, CCSL

1. Introduction

The conceptual models play an important role in the overall system development life cycle
[1]. Numerous conceptual modelling techniques have been created, but all of them have a
limited number of kinds of ontological elements and therefore can only represent ontological
elements of fixed conceptual granularity. For example, entity-relationship modelling technique
[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts
(concept sketches and models) of the conceptual design of closed information systems (IS for
short) by ontological elements of arbitrary conceptual granularity. In our two stage approach

the informational and conceptual aspects of the system that the conceptual model represents are
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described by two separate formalisms. The first formalism describes the informational model
of the system, and the second formalism describes the conceptual model of the informational

model.

The first formalism called an information query system (IQS for short) is a system charac-
terized by sets of states, state objects, information queries, information query objects, answers,
answer objects and an interpretation function. States of an IQS models the information storage
in an IS modelled by the 1QS, queries of the IQS model the information transferring from an
environment to the IS to get the storage content, and answers of the IQS model the information
transferring from the IS to the environment initiated by these queries. State objects, query
objects and answer objects are objects that can be observed in states, queries and answers,
respectively. They describe the observed internal structure of states, queries and answers. The
interpretation function models the information transfer from the IS to its environment and from

its environment to the IS. It associates queries with functions from states to answers.

A wide variety of information systems is modelled by IQSs in the information aspect, includ-
ing search services with search results as answers, factual factographic databases with factual
information as answers, document databases with documents as answers, content consump-
tion devices with content information as answers, logical systems with truth values as answers,
formalisms specifying denotational semantics of programming languages with denotations as

answers and so on.

We consider that the second formalism used for for conceptual modelling of 1QSs must meet

the following general requirements (in relation to modelling of a IQS):

1. It must model the conceptual structure of states and state objects of the 1QS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects
of the IQS.

4. It must model the interpretation function of the 1QS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,
concept instances, relations, relation instances, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the
determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define
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syntactic representations of models of states, state objects, queries, query objects, answers
and answer objects and includes the set of predefined basic query models.

To our knowledge, there is no formalism that meets all the above requirements. Therefore,
we propose a new formalism, conceptual configuration systems (CCS for short), that meets
these requirements.

The paper has the following structure. The preliminary concepts and notation are given
in section 2. The formal definition of 1QSs and the basic definitions of the theory of CCSs
are given in section 3. The structure of conceptuals (atomic conceptual structures of CCSs)
is described in section 4. The structure of conceptual states is considered in section 5. The
classification of elements of conceptual states such that concepts, attributes and individuals is
presented in section 6. The structure of concepts is described in section 7. The classification and
interpretation of concepts is given in 8. The structure of attributes is described in section 9. The
classification and interpretation of attributes is given in 10. The classification of conceptuals
and ontological elements modelled by these conceptuals is presented in section 11. Relations,
types, domains and inheritance are modelled by conceptual structures of CCSs in section 12.
Generic conceptuals describing sets of conceptuals satisfying a pattern are defined in section
13. The language CCSL of CCSs is described in section 14. The semantics of interpretable
elements in CCSL is defined in section 15. We establish that CCSs meet the above requirements
in section 16. CCSs are compared with the related formalism, abstract state machines |3, 4],

in section 17.

2. Preliminaries

2.1. Sets, sequences, multisets

Let O, be the set of objects considered in this paper. Let S; be a set of sets. Let I,;, Ny,
N,y and B; be sets of integers, natural numbers, natural numbers with zero and boolean values
true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the
elements of sets be represented by the corresponding small letters possibly with extended sub-
scripts. For example, i,; and 4,,, are elements of I,;.

Let S, be a set of sequences. Let s, (,), S;{«}, and s;, denote sets of sequences of the forms
(015 -+ Obnse)s {01, -+ Obinyg b5 AN 0p1, - . ., Op.nyy from elements of s,. For example, I, () is a

set of sequences of the form (ins1, .- ., intn, ), and iy is a sequence of the form i1, ..., Ity -
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Let 0p.1,...,0pn,, denote op1,...,00n,0- Let ;) St{sno}s aNd S, denote sets of the
corresponding sequences of the length ng.

Let op1 <[s,] Ob2 denote the fact that there exist op..1, 0px2 and op.3 such that s, =
Ob.x.15 Ob.1; Obx.2, 0b2, Obx3, OI Sqg = (Ob.*.h Op.1, Ob.x.2, 0b.2, Ob.*.S)-

Let [0y 0p1 <= 0p2] denote the result of replacement of all occurrences of o, in 0, by 0p2.
Let [sq4 0p <=4 0p.1] denote the result of replacement of each element 0,5 in s, by [051 0y <= 0p2].
For example, [(a,b) x <=, (f z)] denotes ((f a), (f b)).

Let [len s,] denote the length of s,. Let und denote the undefined value. Let [s, . n:] denote
the n;-th element of s,. If [len s;| < ny, then [s, . ny] = und. Let [s, + s41], [op . + s,] and
[s; + . 0] denote oy, 0p.s.1, Op, Op.« and oy, 0y, Where s, = o, and s, 1 = Op.1.

Let [and s,] denote (cpqg1 and ... and cpan,), where s, = a1, -y Cndn,, and [and] denote
true. In the case of n; = 1, the brackets can be omitted.

Let op1,0p2 € S; US,. Then o, =4 o0p2 denote that the sets of elements of 0,1 and oy

coincide, and o0p1 =, 052 denote that the multisets of elements of 0,1 and o5 coincide.
2.2. Contexts

The terms used in the paper are context-dependent.

Let Ly be a set of objects called labels. Contexts have the form [op.], where the elements
of oy, called embedded contexts have the form: [;:04, lp: or op.

The context in which some embedded contexts are omitted is called a partial context. All
omitted embedded contexts are considered bound by the existential quantifier, unless otherwise
specified.

Let op[op.] denote the object o, in the context [op.].

The object "in oy, 0p.+]” can be reduced to ’in [op] in [op.]’ if this does not lead to ambiguity.
2.3. Functions

Let F), be a set of functions. Let A,, and V; be sets of objects called arguments and values.
Let [f arg.] denote the application of f,, to ayg..

Let [support f,] denote the support in [f.], 1. e. [support f,] = {ary : [fn arg] # und}.
Let [image f, si| denote the image in [f,, s¢], 1. e. [image f, si| = {[fn arg| : ary € s¢}. Let
[image f,] denote the image in [f,, [support f,]]. Let [narrow f, s;] denote the function f, ;

such that [support f, 1] = [support f,1]Ns:, and [fn1 arg] = [fn arg for each a,, € [support f,1].
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The function f, is called a narrowing of f,, to s;. Let [support f,1] N [support fns] = 0. Let
fn1 U fna denote the union f, of f,; and f,o such that [f, a,y = [fn1 ar,) for each a,, €
[support fn1], and [f, arg] = [fn2 arg] for each a,4 € [support f,o]. Let fn,1 C f,2 denote the
fact that [support f,1] C [support fno], and [fu1 arg] = [frn.2 arg] for each a,, € [support f,1].

An object u, of the form a,, : v; is called an update. Let U, be a set of updates. The objects
ary and vy are called an argument and value in Ju,].

Let [fn up] denote the function f,; such that [f,1 arg] = [fn arg if arg # argu,], and
[fn1 arglup]] = viu,]. Let [f, up, tpsn,] be a shorteut for [[f,, up] wpan,]- Let [fr arg.arga. - ..
lyrgn, - U] be a shortcut for [f, arg : [[fa @rgl Grga- - -Grgn, = vi]]. Let [u,.] be a shortcut for
[fn ups], where [support f,] =0

Let C,4 be a set of objects called conditions. Let [if c,q then oy else 0p5] denote the object
oy such that

e if ¢,q = true, then o, = 0y1;

o if ¢,,g = false, then o, = oy5.
2.4. Attributes and multi-attributes

An object 0y, of the form (u,.) is called a multi-attribute object. Let Oy, be a set
of multi-attribute objects. The elements of [0y, W <. a,y[w]] are called multi-attributes
in [opma]. Let Opma be a set of multi-attributes. The elements of [0y w . yw]] are
called values in [opme]. The sequence w, . is called a sequence in [0p.mq] and denoted by
[sequence in 0pma|. An object v is a value in [au.m, Op.ma] I Ob.ma = (Ups1s Qttm * V1, Up o) for
some Up.1 and up 2.

An object 0y, is an attribute object if the elements of [0y w = ayg[w]] are pairwise
distinct. Let Oy, be a set of attribute objects. The multi-attributes in o, ,] are called attributes
in [op4]. Let Ay be a set of objects called attributes.

Let [function oy4], [0p.q au], and [support o, 4] denote [[sequence in oy,]], [[function oyq] ayl,
and [support [function op4)]-

Let [seq—to—att—obj s,] denote (1 : [s, . 1],...,[len sq] : [sq . [len s4]]). Let opq =o (1 :

VL1 ooy Mg & Upp, ). Then [att—obj—to—seq op4] denote (vp1, ..., Uy, )-

3. Basic definitions of the theory of conceptual configuration systems

3.1. Information query systems
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Let Sy be a state of objects called states. An object ss,; of the form (Sy, Oy, @y, Op.q, Ans,
Ob.q, value) is an information query system if Sy, Ops, @, Opg, Ans and Oy, are nonempty
sets, Sy € Ops, Qr C Opy, und € Ay, Aps C Op g, value € Qp x Sy — A, and for all ¢, € Q,
there exists s;; € Sy such that [value g, si| # und. Let Ss,; be a set of information query

systems.

The elements of Sy, O, @y, Opq, Ans and Oy, are called states, state objects, information
queries, information query objects, answers and answer objects in [ss,.], respectively. The
function value is called a query interpretation in [s,,;]. An object 0,5 is a proper state object
if ops ¢ Su. An object oy, is a proper query object if o,, ¢ @,. An object o, is a proper

answer object if oy, & Aps.

As a through illustrative example of the IQS modelled by CCSs we use the geometric system

that includes the following proper state objects:

e kinds of geometric spaces (Euclidean, Riemannian, Lobachevskian and so on);

e kinds of geometric figures (triangles, rectangles, cubes and so on);

e numerical characteristics of geometric figures (length, area, volume and so on);

e units of measurement of numerical characteristics (inches, centimeters, metres and so on);

e values of numerical characteristics represented by real numbers;

e numeral systems for representing values of numerical characteristics (binary, octal, deci-
mal and so on);

e dimensions of geometric spaces represented by natural numbers;

e named geometric figures represented by elements of the set Fy).

A state of the geometric system is a set of relations between proper state objects. For
example, the relation { figure : f,, kind : triangle, space : Euclidean} in [sy]] means that f, is a
triangle in Euclidean space in [sy], the relation { figure : f,, characteristic : perimeter, value :
20} in [s]] means that perimeter of f, equals 20 in [sy], and the relation {kind : cube, space :
Euclidean, characteristic : volume,unit : inch) in [sy] means volume of cubes in Euclidean
space measured in inches in [s4].

PAIEN14

The possible queries in the geometric system can be “area of f,”, “f, is a triangle” and “unit
of measurement of perimeter of f,” returning a number, boolean value and unit of measurement

asS allSWers.

3.2. Atoms
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A set Ay, is a set of atoms if I,; U {true,und} C A,. Structures of CCSs are constructed

from atoms. Therefore, they are implicitly defined in [Aspn,].

@ Let Fg g Atm.
3.3. Elements

Elements are basic structures of CCSs. They model query objects, answer objects and some
proper state objects of IQSs. Let Ej be a set of objects called elements. An object e; of the
forms @, €1.(x), €11 1 €12, Or €11 11 €12 is called an element.

An element ¢ (,) of the form (e;.) is called a sequence element. The object ¢, is called
a sequence in [e; ] and denoted by [sequence in e;()]. The element () is called an empty
element.

An element u, . of the form ay : v; is called an element update. Let U, . be a set of element
updates. The elements ay and v; are called an attribute and value in [u,.].

Let S,; be a set of objects called sorts. An element e; ; of the form ¢; :: s,; is called a sorted
element. Let I, be a set of sorted elements. The elements e; and s,; are called an element
and sort in [e;].

An element e, of the form ¢; :: exc is called an exception. Let E,. be a set of exceptions.
The element ¢ is called a value in [e,.]. Thus, the sort exc specifies exceptions. Exceptions in
CCSs play the role that is analogous to the role of exceptions in programming languages. An
element e; is abnormal if ¢; € E,., or ¢, = und. Let Ej . be a set of abnormal elements. An
element e; is normal if e; is not abnormal. Let E;,, be a set of normal elements.

An element e;,,, is a multi-attribute element if ¢; € Opma. Let Ej .. be a set of multi-
attribute elements. An element ¢;, is an attribute element if ¢; € Oy ,. Let E;, be a set of

attribute elements.

P The element (f,, is, triangle) means that f, is a triangle.

3.4. Conceptuals

Conceptuals are atomic conceptual structures of CCSs. Conceptual structures of CCSs are
constructed from conceptuals. Conceptuals model some proper state objects of IQSs. An
attribute element ¢, is a conceptual if [support c,ep] C L. Let Chep be a set of conceptuals.
An element of the form i,, : ¢ is called a conceptual update. Let U, . be a set of conceptual

updates.
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D Let cpepr = (—3 : 10, -2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
the following properties hold:
— Cnepl 18 @ conceptual;
——=3:10, =2 :inch, —1 : area, 0 : f,, 1 : triangle, 2 : Euclidean and 3 : 2 are
conceptual updates;
— Cnepr models the area (the attribute —1) of the triangle (the attribute 1) f, (the
attribute 0) in three-dimensional (the attribute 3) Euclidean (the attribute 2) space,

measured in inches (the attribute —2) in the decimal system (the attribute —3).
3.5. Conceptual states

Conceptual states are conceptual structures of CCSs specifying values of conceptuals. They
model some proper state objects of 1QSs. An attribute element s is a conceptual state if
[support su] C Crep. Thus, sy can reference to either a state of a IQS or a conceptual state of
a QTS depending on the context.

A function value € Chep X Sy — Ej is a conceptual interpretation if [value cpep Si) =

[Stt Cnept]- The element [value cpep Su) is called a value in [Cpepr, Sit]-

@D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and
Stt = (Cnept © 3). Then the following properties hold:
— [value chep St = 3;
— 3 is the value in [¢pep, Sul;
—area of the triangle f; in two-dimensional Euclidean space equals 3 inches in the

decimal system in [sy].
3.6. Conceptual configurations

Conceptual configurations are conceptual structures of CCSs partitioning states into named
substates. They model states of IQSs. Let N,, be a set of objects called names. An attribute
element ¢,,s is a conceptual configuration if [image c,¢] C Sy. Let C,f be a set of configurations.
An element n,, is a name in [¢,¢] if n, € [support c¢,¢]. An element n,, is a name in [sy, ¢, f]
if [cnf nm] = si. An element sy is a substate in [c, /] if s;; € [image c,f]. An element s is a
substate in [n,, cuf] if [cnf ] = su. A substate sy is unnamed in [c,f] if [cnf ()] = Su. The
element () is called an unnamed substate specifier.

A function value € Cpey X Ep x Cyy — Ej is a conceptual interpretation if [value Cpep M,
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Cnf] = [value Cpepi [Cnf m]]. The element [value cyepr Ny Cop) is called a value in [cpepr, Tom, Cnf].-

An element sy, of the form sy :: state :: n,, is called a named state. Let Sy, be a set of
named states. The elements sy and n,, are called a state and name in [sy,,]. The element s
references to sy :: state :: () in the context of named states.

An element c,¢pp, of the form ¢,y :: state :: n,, is called a named conceptual. Let Ceprn
be a set of named conceptuals. It specifies the conceptual ¢, in the state with the name n,,.
The elements ¢,y and n, are called a conceptual and name in [c,epn]. The element cpep
references to ¢, it state :: () in the context of named conceptuals.

A function value € Cpepn X Cpy — Ej is a conceptual interpretation if [value Cpepin Cnfl =

[value cpepi[Crepinll mlCnepin] Cnept]. The element [value chepin cny] is called a value in [¢reprn,

Cnfﬂ.

3.7. Substitutions, patterns, pattern specifications, instances

A function s, € E; — Ej, is called a substitution. Let S, be a set of substitutions. A
function subst € Sy, X E;. — Ej, is a substitution function if it is defined as follows (the first

proper rule is applied):

o [subst sy (€1..)] = ([er. w <=y [subst s, w]]);

o if ¢; € [support sp], then [subst sy, ¢;] = [sp €];
o [subst sp ayn| = apm;
o [subst sy Iy : €] = [subst s ly] : [subst sy e];
o [subst s, € :: nosubst] = ey;
o [subst s, ) 1 (nosubstexcept e;.)] = [subst [narrow s, {e;.}] ell;
o [subst sy € :: Spy| = [subst sy €] = [subst sy Spl;
[
[

o [subst sp €1..] = [e1. w <=, [subst s, w]].

The sort nosubst specifies the elements to which the substitution s, is not applied. The sort
(nosubstexcept e ) specifies the elements to which the narrowing of the substitution s;, to the
set e, is applied. An element p; is a pattern in [e;, s] if [subst s, p] = €;. Let P, be a set of
patterns. An element i, is an instance in [p, sp] if [subst sy p] = insi. Let I, be a set of
instances.

Let V. and V;. ; be sets of objects called element variables and sequence variables, respectively.
An element p; ¢ of the form (py, (v,.4), (Vr.5.4)) is & pattern specification if {v, s }N{v,.} = 0, and

the elements of {v, .} U {v,s.} are pairwise distinct. Let P, be a set of pattern specifications.
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The objects p;, (v,4), and (v,.,.) are called a pattern, element variable specification, and
sequence variable specification in [p; s]. The elements of v, , and v, ;. are called element pattern
variables and sequence pattern variables in [p; ], respectively.

An element i,4 is an instance in [pyg, sp] if [support sy] = {v..}, [sp v.] € E; for v, €
{Vrs} \{vrss}, [80 0] € Ep for v, € {v,54}, and i, is an instance in [p;, sp]. An element i,
is an instance in [p; 5] if there exists s, such that i, is an instance in [py.s, ]

A function m; € E; x P, 4 — Sy is a match if the following property holds:

o if [my e; py.s] = sp, then e is an instance in [p;, sp].
An element i, is an instance in [p;, my, Sp] if [My inst Prs] = Sp. An element i,y is an

instance in [p; s, m¢] if there exists s, such that i, is an instance in [p;s, My, Sp].
3.8. The element interpretation

Queries and answers of a IQS is modelled by elements, and the query interpretation of the
IQS is modelled by the element interpretation value € E; x C,y — E; based on atomic element
interpretations, element definitions and the element interpretation order.

The special variable conf :: in references to the current configuration in the definitions
below.

An object i, of the form (pg, (vr4), (Vrsx), fn) is an atomic element interpretation if
(pt, (Vr4), (Urss)) is a pattern specification, conf :: in ¢ {v..} U{v.s.}, fu € S — Ej,
[support f.] = {sp : [support sp] = {vri} U {05} U{conf = in},[sp v,] € Ej forwv, €
{v,.}, and [sp v.] € Ep, for v, € {v.54}}. Let L., be a set of atomic element interpreta-
tions.

The objects py, (vr4), (vrsx), and f, are called a pattern, element variable specification,
sequence variable specification, and value in [i,.,]. The elements of v,., and v, . are called
element pattern variables and sequence pattern variables in [[i,..], respectively.

A function 4,405 € E; — e is called an atomic element interpretation specification
if [support inu.qs) is finite. An interpretation i,., is an atomic element interpretation in
lintras] if [intras Tm] = tnera for some n, € E;. An element n,, is a name in [inyuq, intra.s]
if [intras Mm| = intra. An element n,, a name in [iny.q.s] if 7, 18 @ name in [ing.q, ingra.s] for
SOME Tptr.q-

An element d; of the form (p;, (vy.4), (Vr.s.4), ba) is an element definition if (py, (Vy.4), (Vrs.4)) I8

a pattern specification, and conf ::in ¢ {v..} U{v,.s.}. Let D be a set of element definitions.



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 79

The objects p, (vrx), (vr54) and by are called a pattern, element variable specification,
sequence variable specification and body in [ds]. The elements of v, . and v,,, are called
element pattern variables and sequence pattern variables in [df], respectively.

An attribute element dy  is called an element definition specification if [support ds.| C E,
and [image dss] € Dy. A definition dy is an element definition in [dy] if [dfs n,| = df for
some n,, € ;. An element n,, is a name in [dy,dy,] if [dss nm] = dy. An element n, a name
in [dys] if n, is a name in [dy, dy,] for some dy.

Let [support intr.a.s] N [support ds.g] = 0.

An element 0,4 jn¢- of the form (n,,.) is called an element interpretation order in [ip¢r.q.5, df.s]
if {nm.} C [support ini.q.s] U [support dy], and the elements of n,, . are pairwise distinct. It
specifies the order of application of atomic element interpretations and element definitions to
the element to be interpreted.

The information about the element definition specification and element interpretation order
of configurations is stored in the substate interpretation of the configurations. The conceptuals
(0 : definitions) :: state :: interpretation and (0 : order) :: state :: interpretation define the
element definition specification and element interpretation order of the configurations, respec-
tively.

An element ¢, ¢ is consistent with (intr.q.s, df.s, Ord.iner) if the following properties hold:

o if [support inerq.s] N [support [cnp (0 : definitions) :: state :: interpretation]] = (;

e dss Clcns (0: definitions) :: state :: interpretation;

o if N1 <[o,uine] Mm2, A0d N1, Nima € [cap (0 1 order) :: state :: interpretation], then
Mm.1 =[lens (0:order):state::interpretation]] Tm.2-

A function value € E; x Cpy — Ej is an element interpretation in [ine.a.s, df.s, Ordintr, Me] if
[value e; ¢, f] = [value e cyf [cny (0 : order) :: state :: interpretation]]. It specifies interpreta-
tion of elements in the context of configurations. The element [value e; ¢,y is called a value in
[er, enyl.-

The auxiliary function value € E; x Cyy X Ny, sy — Ej is defined by the following rules (the
first proper rule is applied):

o if ¢,s is not consistent with (inty.a.s, df.s; Orginer), then [value e; cop Ny (0] = und;
o if intra = [intras Mm), € is an instance in [pgs[ineral, M4, Sp]), and [fullintra] sp U (conf :
in: cpp)| # und, then [value e; ¢pp (N Nni)] = [fullinera] [So conf : cnfl];

oif df = [[cns (0 : definitions) :: state :: interpretation| n,,|, € is an instance in
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[pe.slds], me, so]], and [value [subst s, U (conf = in : cnf) baldf]] cnf] # und, then
[value e; cpp (N N x )] = [value [subst [s, conf : cnr] ballds]l] cnyl;
o [value e; chp (N Nini)] = [value e ey ()]s

o [value e, ¢,y ()] = und.
3.9. Satisfiable and valid elements

An element ¢; is satisfiable in [(v;..), cnf] if there exists s, such that [support sp] = {v,..},
and [value [subst sy, €] c,f] # und.
An element ¢; is valid in [(v,.4), cof] if [value [subst s, €] cnf] # und for each s, such that

[support sy = {v,+}.
3.10. Conceptual configuration systems

An object s, of the form (Aum, intr.as, Af.s; Ord.intr, M) is called a conceptual configuration
system if 4,4y.4.5, df.s, Ordg.intr and my are an atomic element interpretation specification, element
definition specification element interpretation order and match in [Ay,], and [support ip.q.s] N
[support dgs] = 0. Let Ss.. be a set of conceptual configuration systems.

The elements of Ay, Ei[Aimnl, Crepi[Aiml, SuulAim] and Cyf[Aw,] are called atoms, ele-
ments, conceptuals, states and configurations in [s,;..].

The objects intr.q.s, df.s; Ord.intr and my are called atomic element interpretation specification,
element definition specification, element interpretation order and match in [ss..].

An element ¢; is interpretable in [ss..] if there exist n,, such that e, is an instance in

[pe.sllintr.as mm]], me], or e is an instance in [p;s[[ds.s nm]], me]-
3.11. Conceptual information query models

An object myg 4. of the form (Ss.c.c, Tpr.s; Tpr.g, Tpra) 1S @ conceptual information query model
i [ss.q.i] i Tors; Torgs Tora € Fay [support vy, s] = Oy s[ss.44l, [image rp.s] € Eiflssee], [image
Tpr.s Sit[Ss.q.i]] C Cuflss.c.cl, [support rprql = Opgl[8s.q.4]; [image rprq] € Eilss.c.c]l; [support vp,.q]
= Ob.a[Ss.q.]s [image 1pr0] C Ei[Ss.ccl, and [rp.q [value ¢, su]] = [value [rp.q @] [Tprs St]]. Let
Mg q.i.c be a set of conceptual information query models.

The system s; .. is called a conceptual configuration system in [mg.4..]. The functions r, s,
Tprq and 7, are called a state representation, query representation and answer representation

in [ma.q.i.], respectively.
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A system s, ,, is conceptually modelled in [[s;..] if there exists mg ;. such that s;.. =
Ss.cc[Marqic], and mg 4. is a conceptual query model in [s,,;]. The set [image 7, ] is called
an ontology in [[s4.i, Marq.ic]- It includes conceptual structures of s c[marq.i.c] representing
the conceptual structure of state objects in [s;.4.]-

Let rp, o, 75, and 7, , denote the inverse functions of 7, 5, 7prq and 7, in the case of their

existence.
3.12. Extensions

A system ;41 is an extension of s 40 if $¢[Ssqi1] C se[Ssq..2] for each s, € {Su, Ops, @,
Ob.qa An57 Ob.av Ualue}‘
A system sg..1 is an extension of Sgcco if 0p[Ss.cc1] = 0b[Ss.cca] for each o, € {Apn, mi},

St[Ss.c.c1] C St[[Ss.cce] for each s; € {intrqs, dr.s}, and the following property hold:

o if Nm —<Hord.intrﬂsS»CAC<l]”] Nm.2, and Nm.1; Mm2 € Ord.intr[[ss.c.cQ]]a then Nm.1 '<[[o,.d,imr[[ss‘c‘c.2ﬂﬂ
Nm.2.
A CCS [, is a language of CCSs if the conceptual structures (atoms, elements, conceptuals

and so on) of [, is syntactically defined.

4. Structure of conceptuals

4.1. Elements of conceptuals

An element e; is an element in [Cpepr, ne] if € = [Cnept ine] and e; # und.

D Let cpepr = (=3 : 10, -2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
10, inch, area, f,, triangle, Euclidean, 2 are elements in [c ] in [ — 3], [— 2], [ — 1],
[o], 111, 121, [3].

An element e¢; is an element in [¢pep ] if there exists i, such that e; is an element in [cpepr, int]-

@D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

10, inch, area, f,, triangle, Euclidean, 2 are elements in [Cpep]-
4.2. Orders of conceptuals in the context of elements

A number i, is an order in [Cpep, €] if €, = [Cnept int) and e; # und. Let O,q be a set of

objects called orders.
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D Let cpepr = (=3 : 10,2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2).
Then —3, =2, —1, 0, 1, 2, 3 are orders in [¢,p] in [10], [inch], [area], [f,], [triangle],
[Euclidean], [3].

A number i, is an order in [¢pep, element ] if there exists e; such that i,; is an order in

[[Cncpla el]]-
D Let cpepr = (—3 : 10, -2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

-3, -2, —1,0, 1, 2, 3 are orders in [¢,ep, element :].
4.3. Properties of elements of conceptuals

Proposition 1. The element und is not an element in [c,ep]-

Proof. This follows from the definition of element in [cpep]. O

Proposition 2. The number of elements in [¢,y] is finite.

Proof. This follows from the fact that [support cpeu| is finite and und is not an element in

[enep]- B
4.4. Properties of orders of conceptuals in the context of elements

Proposition 3. The number of orders in [[¢pep, €1cnep]l] is finite.
Proof. This follows from the fact that [support c¢eu| is finite and und is not an element in

[[Cncpl]]- O
Proposition 4. The number of orders in [¢pep, element :] is finite.

Proof. This follows from the fact that [support ¢,y is finite. O
4.5. Kinds of orders of conceptuals in the context of elements

An order o,q[Cpepi; €] is minimal in [¢pep, €] if 4, is not an order in [cpep, €] for each i,
such that 7,; < 0,4.
@D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
—2 is a minimal order in [¢,epr, tnch].
An order o.q[Cpepi] 1s minimal in ¢, element <] if i, is not an order in [¢pep, €] for each
ine such that 7,; < 0,4.
@D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

—3 is a minimal order in [¢,¢p, element :].



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 83

An order o,4[Cpepr, €] 1s maximal in [c,epr, €] if 75 is DOt an order in [cpep, €] for each i,
such that 0,4 < ip;.
P Let cpepr = (=3 : 10, =2 :inch, —1 : area,0 : f,,1 : triangle, 2 : Euclidean,3 : 10). Then
2 is a maximal order in [¢pep, FPuclidean].

An order o,4[Cpep] is maximal in [¢,ep, element :] if 4, is not an order in [cyep, €] for each

ine such that 0,4 < 7.

P Let cpept = (=3 :10,—2 :inch,—1 : area,0: f,, 1 : triangle,2 : Euclidean,3 : 2). Then 3

is a maximal order in [¢pep, element :].
4.6. Kinds of elements of conceptuals

An element ¢; is minimal in [c,ep] if there exists o,4[cnep, €] such that o,4 is minimal in

[nepl, element .
D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then
10 is a minimal element in [cep]-

An element e; is maximal in [¢,qpn] if there exists oyq[cnep, €] such that o, is a maximal

order in [[¢,ep, element :].
@D Let cpepr = (—3: 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then 2
is a maximal element in [¢,ep]-
An element e; is null in [c,eu] if € is an element in [cep, 0]
@D Let cpepr = (=3 : 10, =2 : inch, —1 : area,0 : f,, 1 : triangle,2 : Euclidean,3 : 2). Then

fg is null in [cpep]-

5. Structure of conceptual states

5.1. Conceptuals

A conceptual ey is a conceptual in [sy] if [value cuep S| # und.

A conceptual ¢, 18 a conceptual in [eur] if Cpepi[Crepin] 1 a conceptual in [[c,f nm
lenepinl]]l- A conceptual cpey is a conceptual in [c, ] if there exists n,, such that cpey :
state :: n,y, is a conceptual in e, ].

@D Let cpepr = (=3 : 10, =2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

[support siu] = {cnepi}- Then ¢, is a conceptual in [sy].
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5.2. Elements, orders, concretizations

An element e; is an element in [su, int, Coepr] if Cnep 1S a conceptual in [s;] and e; is an
element in [Cpepr, ine]. An element e; is an element in [c,f, int, Creprn] if € is an element in
llens [name in cpepin)]s int, [conceptual in cpepn]].

A number ,; is an order in [e;, Si, Chep] if € is an element in [Su, int, Cpep]. A number i,
is an order in [e;, ¢uf, Cnepln]l if € is an element in [¢,f, int, Crepin]-

A conceptual ¢,y is a concretization in [e;, sy, ine] if € is an element in [Sy, int, Cpept]. A

conceptual ¢,y Is & concretization in [e, Cnf, int] if €; is an element in [[cnf, ints Cnepln) -
5.3. Kinds of elements

An element ¢; is an element in [[sy,4,.] if there exists ¢, such that e; is an element in
[stt, int, Cnept]- An element e; is an element in [c,f, ine] if there exists cpep., such that e; is an
element in [¢nf, int, Coepin]-

An element ¢; is an element in sy, ¢, if there exists i, such that e; is an element in
[stt, int, Cnept]- An element e; is an element in [, f, Cpepin] if there exists i, such that e; is an
element in [¢nf, int, Coepin]-

An element ¢; is an element in [sy] if there exists i,, such that e, is an element in [sy, i,,].

An element ¢; is an element in [c,f] if there exists ¢, such that e; is an element in [¢,f, in].

5.4. Kinds of orders

A number i,, is an order in [e;, sy] if ¢; is an element in [sy, i,:]. A number 4,, is an order
in [e;, cuy] if € is an element in [z, ine].
A number i, is an order in [sy, element :] if there exists e; such that i,; is an order in

ler, sue]. A number i, is an order in [c,r, element :] if there exists e; such that 4,, is an order

in [, cns]-
5.5. Kinds of concretizations

A conceptual ¢,y is a concretization in [e;, sy ] if € is an element in [sy, ¢uep]]. A conceptual
Cnepln 18 @ concretization in [e;, ¢, ] if €; is an element in [, f, Cpepin]-

A conceptual ¢, is a concretization in [sy, element :] if there exists e; such that ¢,y is
a concretization in [e;, su]. A conceptual cpepp 1S @ concretization in [¢,r, element :] if there

exists e; such that ¢pep.p 1S @ concretization in [e;, ¢, f].
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5.6. Example

P Let ¢ = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 8, =2 : em,—1 : volume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
[support sy] = {cner1; Cner2}- Then the following properties hold:

—10, 8, inch, cm, area, volume, €, 41, €42, trianle, cube, Fuclidean, Lobachevskian,

3, 2 are elements in [sy];
— =3, -2, —-1,0, 1, 2, 3 are orders in [sy, element :;

— Cnel1, Cnel2 are concretizations in [sy, element :].

5.7. Properties of elements

Proposition 5. For all e¢; and 4,; there exist s; and ¢,y such that e; is an element in
[[Stta int7 cncpl]] .
Proof. We define sy and ¢, as follows: [Cpepr int] = € and [sy Cpep] 7# und. Then e; is an

element in [St, int, Cpept]. O

6. Classification of elements of states

Elements in [sy] are subclassified into individuals, concepts and attributes.

6.1. Individuals

Individuals in [s4] model elements in [ss.q.]-

An element ¢ is an individual in [sy, chep] if € is an element in [sy, 0, chep]. An element e
is an individual in [c,f, Cheprn] if € is an element in [c,f, 0, Chepin]-

P Let cpep = (=3 : 10,—-2 : inch, —1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

St = (Cnept + 3). Then f; is an individual in [sy, chep]-

An element ¢; is an individual in [sy] if there exists cpey such that e, is an individual in
[stts Cnepr].  An element e; is an individual in [c,f] if there exists ¢pepn such that e; is an
individual in [¢,f, Chepin]-

D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (—3 1 8,—=2 : em, —1 : wolume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and

Stt = (Cnet1 3, Cner2 © 4). Then e 41 and €45 are individuals in [sy].

6.2. Concepts
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Concepts in [s4] generalize models of the usual concepts in [s;,;] which are interpreted as
sets of elements in [s; 4]

An element ¢; is a concept in [Sy, nt, Cpept] if € is an element in [sy, Ny, Cpep]. A number
ng is an order in [e;, Sy, Crep] I [concept : ey, S, Caept] if € is a concept in [Su, 14, Cpept]. A
conceptual ¢, is a concretization in [concept : ey, sy, ]| if €; is a concept in [[sy, 1, Crepi]-

An element ¢; is a concept in [c,,f, e, Coeprn]] if € 1s an element in [, f, Nty Cpepin]. A number
ny is an order in [e;, Cu, Crepln] 10 [concept @ ey, cuf, Cneprn]l if € is & concept in [, f, N, Crepin]- A
conceptual ¢, 1S & concretization in [concept : e, ¢, f, n] if € is a concept in [, f, nt, Crepin]-

@D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

Stt = (Cnept = 3). Then the following properties hold:
—triangle, Euclidean, 2 are concepts in [sy] in [1], [2], [3] in [cnepl];
—1, 2, 3 are orders in [concept : triangle], [concept : Euclidean], [concept : 2] in [sy]
in [enepl;
— Cnept 1S @ concretization in [concept : triangle], [concept : Euclidean], [concept : 3]
in [s4] in [1], [2], [2]

An element e; is a concept in [sy,n:] if there exists ¢,y such that e; is a concept in
[stt, nt, Coept]. A number n; is an order in [e;, su] in [concept : e, su] if e is a concept in
[ste, 1]

An element e; is a concept in [c,f, n] if there exists cpepn such that e; is a concept in
lens, ne, Crepin]- A number n; is an order in [e;, ¢,¢] in [concept : e, c,¢] if € is a concept in
lenys na]-

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8,—=2 : em, —1 : volume,0 : e 49,1 : cube,2 : Lobachevskian,3 : 3), and
St = (Cper1 3, Cnero © 4). Then the following properties hold:
—triangle, Euclidean, 2 are concepts in [sy] in [1], [2], [2];
— cube, Lobachevskian, 3 are concepts in [sy] in [1], [2], [3];
—1, 2, 3 are orders in [concept : triangle], [concept : Euclidean], [concept : 2] in [s4];
— 1, 2, 3 are orders in [concept : cube], [concept : Lobachevskian], [concept : 3] in [s4].

An element ¢; is a concept in [[su, Cpep] if there exists n, such that e; is a concept in
[stes nts Cnept] - A conceptual ey s a concretization in [e;, su]] in [concept : e, su] if e is a
concept in s, Coept]-

An element e; is a concept in [cnf, Capin] if there exists n; such that e; is a concept in



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 87

lens, ne, Crepin]- A conceptual Cpepn is a concretization in [e;, c,¢] in [concept : e, cnf] if € is
a concept in ¢, f, Caepln]-
@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (—3 : 8,—=2 : em, —1 : volume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
Stt = (Cper1 3, Cnero + 4). Then the following properties hold:
—triangle, Euclidean, 2 are concepts in [Sy, Cha]);
— cube, Lobachevskian, 3 are concepts in [sy, Cre2];
— Cper1 18 @ concretization in [concept : triangle], [concept : Euclidean]), [concept : 2]
in [[Stt]];
— Cpe2 18 & concretization in [Jconcept : cube]), [concept : Lobachevskian], [concept : 3]
in 4]

An element ¢; is a concept in [s;] if there exists n, such that e; is a concept in [s;, ni]]. A
number n; is an order in [sy] in [sy, concept :] if there exists e; such that n; is an order in
[concept : e, su]. A conceptual ¢,y is a concretization in [sy] in sy, concept :] if there exists
e; such that ¢, is a concretization in [concept : e, su].

An element e; is a concept in [c, ] if there exists n; such that e; is a concept in [c,f, ne].
A number n; is an order in [e,¢] in [c,f, concept o] if there exists e; such that n; is an order
in Jconcept : e, cnf]. A conceptual ¢,ep, is & concretization in [, f] in [, f, concept :] if there
exists e; such that ¢, is a concretization in [concept : e, cnf]].

D Let chaq = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8,—=2 : em, —1 : wolume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
Stt = (Cnet1 * 35 Cner2 + 4). Then the following properties hold:

—triangle, Euclidean, 2, cube, Lobachevskian, 3 are concepts in [sy];

—1, 2, 3 are orders in [sy, concept :];

— Cpel1, Cnel2 are concretizations in [sy, concept :].

6.3. Attributes

Attributes in [sy] generalize models of the usual attributes in [s;,;] which are interpreted
as characteristics of elements of s, ;.

An element ¢; is an attribute in [sy, n¢, Chep] if € is an element in [sy, —n, Cpep]. A number
ny is an order in [e, Su, Coept] i [attribute : ey, Sy, Cuep] if € is an attribute in [su, ne, Caep]- A

conceptual ¢,y is a concretization in [attribute : e, sy, ] if € is an attribute in [su, ns, Coepl]-
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An element ¢; is an attribute in [cuf, N, Creprn]] if € is an element in [c,f, =N, Cocprn]. A
number n; is an order in [e;, Cpf, Cuepin] 10 [attribute : e, cpf, Cpepin] if € is an attribute in
lens, e, Cnepin]- A conceptual cpepn i a concretization in [attribute : e, ¢, ni] if € is an
attribute in ¢z, Nty Crepln]-

@D Let cpep = (=3 : 10,—-2 : inch, —1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and

Stt = (Cpept : 3). Then the following properties hold:
—area, inch, 10 are attributes in [s¢] in [1], [2], [3] in [caep]:
—1, 2, 3 are orders in [attribute : area], [attribute : inch], [attribute : 10] in [sy] in
[cnepl
— Cpepl 18 a concretization in [attribute : area], [attribute :inch], [attribute : 10] in
[su] in [1], [2], [3].

An element ¢; is an attribute in sy, n;] if there exists ¢, such that e; is an attribute in
[stts ity Cpepr]- A number n; is an order in [e;, si] in [attribute : e, su] if € is an attribute in
[ste, 4]

An element ¢; is an attribute in e, f, n¢] if there exists ¢, such that e; is an attribute in
[cnss ey Cnepin]- A number n, is an order in [e;, ¢,f] in [attribute : e, c,f] if e; is an attribute
in [enr, ne].

@D Let cha1 = (=3 : 10,2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8,—=2 : em, —1 : volume,0 : e, 49,1 : cube,2 : Lobachevskian,3 : 3), and
Stt = (Cnet1 * 3y Cner2 = 4). Then the following properties hold:
—area, inch, 10 are attributes in [s] in [1], [2], [3];
—volume, cm, 8 are attributes in [s] in [1], [2], [3];
—1, 2, 3 are orders in [attribute : area], [attribute : inch], [attribute : 10] in [sy];
—1, 2, 3 are orders in [attribute : volumel), [attribute : em], [attribute : 8] in [sy].

An element ¢; is an attribute in [S4, ¢ if there exists n; such that e; is an attribute in
[stts Mty Cnept]- A conceptual ¢,y is a concretization in [e;, sy] in [attribute : e, s if e, is an
attribute in [ss, Crept]-

An element ¢; is an attribute in ¢, f, Cpepin] if there exists n, such that e; is an attribute in
lens, ne, Crepin]- A conceptual cpepn is @ concretization in [e;, c,¢] in [attribute : e, c,y] if e is
an attribute in [¢,f, Chepn]-

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 8, =2 : em,—1 : volume,0 : €, 49,1 : cube,2 : Lobachevskian,3 : 3), and
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Stt = (Cper1 * 3, Cner2 © 4). Then the following properties hold:
— area, inch, 10 are attributes in [sy, che1]);
—volume, cm, 8 are attributes in [sy, chao];
— Cper1 18 & concretization in [attribute : area], [attribute : inch], [attribute : 10] in

[[Stt]]Q

— Cpa2 IS a concretization in [attribute : volume], [attribute : em], [attribute : 8] in
Hstt]]-

An element e; is an attribute in [sy] if there exists n; such that e; is an attribute in
[sit,me]. A number n; is an order in [sy, attribute ;] if there exists e; such that n; is an
order in [attribute : e;, su]]. A conceptual ¢,y is a concretization in [sy, attribute :] if there
exists e; such that ¢,y is a concretization in [attribute : e, su].

An element e; is an attribute in [c, ] if there exists n, such that e; is an attribute in
lens, ne]. A number ny is an order in [c,f, attribute :] if there exists e; such that n; is an order
in [attribute : e, c,¢]. A conceptual ¢pepp is a concretization in [e,f, attribute :] if there exists

e; such that ¢,ep.p 1S a concretization in [attribute : e, cnf].

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnet2 = (=3 :8,—=2 : cm, —1 : volume,0 : €rg2,1 1 cube,2 : Lobachevskian,3 : 3), and
Stt = (Cper1 * 3, Cnero © 4). Then the following properties hold:

— area, inch, 10, volume, cm, 8 are attributes in [sy];
—1, 2, 3 are orders in [sy, attribute :J;

— Cnel1, Cnel2 are concretizations in [sy, attribute :J.

Concepts and attributes are considered in detail below.

7. Structure of concepts

7.1. Direct concepts

The usual concepts in [ss 4] which are interpreted as sets of elements in [s; ;] are modelled

by the special kind of concepts in [sy], direct concepts in [sy].

7.1.1. Direct concepts

An element ¢; is a direct concept in [su, Chep] if € is a concept in [sy, 1, chep]. An element

e, is a direct concept in ¢, ¢, Cpepin] if € s a concept in e, 1, Chepin]-
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An element ¢; is a direct concept in [sy] if there exists ¢, such that e; is a direct concept
in s, Caepr]. An element e; is a direct concept in [e, ] if there exists ¢, such that e is a

direct concept in [cur, Crepn]-

7.1.2. Concretizations

A conceptual ¢, is a concretization in [direct—concept : e, sy if €; is a concept in [sy, 1,
Cnept]. A conceptual ¢, 1S a concretization in [direct—concept : e, cn¢] if € is a concept in
lens, 1, Cnepin]-

A conceptual ¢, is a concretization in [sy, direct—concept :| if there exists e; such that
Cnepl 18 @ concretization in [direct—concept : e, sy ]. A conceptual cpepn is a concretization in
leny, direct—concept -] if there exists e; such that ¢, is a concretization in [direct—concept :
e, Cnfl-

@D Let chg1 = (=3 : 10,-2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),
Cnet2 = (—3: 10, -2 : inch, —1 : perimeter,0 : f,,1 : rectangle,2 : Euclidean,3 : 2), and
[support syu] = {cne1; Cna2}- Then the following properties hold:

—triangle and rectangle are direct concepts in sy;
— Cper1 18 a concretization in [direct—concept : triangle, syl

— Cpa2 Is a concretization in [direct—concept : rectangle, sy].

7.2. Elements of concepts
7.2.1. Elements, orders, concretizations

An element ¢; is an element in [concept : cuep, S, concept—order : ny, element—order
ints Cnept] if Cnep 18 & concept in [Su, ne, Coept], € 18 an element in [Cpeprs ine], and i,y < ny. An
element e; is an element in [concept : cyep, Cnr, concept—order : ny, element—order : int, Cpepin]
if Cpep 18 @ concept in [cnf, M, Crepinl], € 18 an element in [Cpepin, int]], and i, < ng.

Thus, elements of ¢, can be concepts of orders which are less than the order of cyp,
individuals and attributes of any orders.

A number n; is an order in [e;, concept : Cpep, Sut, element—order : iy, Cpep] if € is an element
in [Jconcept : Cpep, Sy, concept—order : ng, element—order : iy, Coep]. It specifies the order in
[nepts Cnepl]- A number n; is an order in [e;, concept : cpep, Cng, element—order : ing, Cpeprn] if €
is an element in [concept : cpep, Cng, concept—order : ng, element—order : int, Cpepin]-

A number i, is an order in [[e;, concept : Cpep, Sit, concept—order : ny, Cuep] if € is an element
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in [concept : cuep, Stt, concept—order : ny, element—order : iy, Coep]. It specifies the order in
[cnepis €] A number i, is an order in [e;, concept : Cpep, Cnf, concept—order : ny, Cpepin] if € is
an element in [concept : cyep, Cny, concept—order : ny, element—order : iy, Cocpin]-

A conceptual ¢, is a concretization in [e:, concept - Cneps Stt, concept—order : ny, element—
order : iy] if € is an element in [concept : Cpep, Sy, concept—order : ny, element—order
int, Cnept]- 1t defines that e; is an element in [concept : cuep, S, concept—order : ny, element—
order : in]. A conceptual ¢pep, is a concretization in [e;, concept : Cpep, Cng, concept—order :
nt, element—order : i,,] if €; is an element in [concept : cpep, Cnf, concept—order : ny, element—

order : int, Cnepin]-

7.2.2. Kinds of elements

An element ¢ is an element in [concept : ¢yep, S, concept—order : ny, element—order : i) if
there exists ¢, such that e; is an element in [concept : ¢pep, S, concept—order : ny, element—
order : z'nt,cncpl]]. An element e; is an element in [[concept I Cpeps Cnf, concept—order : ny,
element—order : i, if there exists cpepn such that e; is an element in [concept : chep, Cny,

concept—order : ny, element—order : i,;, cncpl.n]].

An element ¢; is an element in [concept : ¢pep, Sy, concept—order : ny, Cpep ]| if there exists i,
such that e; is an element in [concept : ¢yep, Su, concept—order : ny, element—order : int, Cpepl]-
An element ¢; is an element in [concept : ¢yep, Cnf, concept—order : ny, Coepin] if there exists
int such that e; is an element in [concept : cpep, Coy, concept—order : ny, element—order
inta Cncpl.n]] .

An element ¢; is an element in [concept : Cpep, S, element—order : iy, Coep if there exists ny
such that ¢; is an element in [concept : cpep, Sit, concept—order : ny, element—order : ing, Cpepi]-
An element ¢; is an element in [concept : cuep, Conyf, element—order : ing, Cpepin] if there exists
n; such that e; is an element in [concept : cnep, Cny, concept—order : ny,element—order
Z.nta Cncpl.n]] .

An element e; is an element in [concept : Cpep, Sit, concept—order : ny] if there exist i,
and ¢pey such that e; is an element in [concept : cuep, S, concept—order : ng, element—order :
ints Cnepl])- A element e; is an element in [concept : Cpep, Cnf, concept—order : ny]| if there exist i,
and Cpeprn sSuch that e; is an element in [concept : c,ep, Cnf, concept—order : ny, element—order :
Z.nta Cncpl.n]] .

An element ¢; is an element in [concept : cpep, Str, element—order : i,,] if there exist n; and
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Cnept Such that e; is an element in [concept : Cpep, Su, concept—order : ny, element—order
int, Cnept]- An element e; is an element in [concept : ¢pep, Cng, element—order : i,,] if there exist
ng and Cpeprn, such that e is an element in [concept : cpep, Cnf, concept—order : ny, element—
order : int, Cnepin]-

An element e; is an element in [concept : Cpep, Sit, Cnept] if there exist n; and 4, such that e
is an element in [concept : cpep, Sut, concept—order : ny, element—order : ip, Cpepr]. An element
e; is an element in [concept : Cuep, Cuf, Cnepin] if there exist n, and i, such that e; is an element
in [concept : Cpep, Cng, concept—order : ny, element—order : int, Cpepin]-

An element e, is an element in [concept : Cpep, St] if there exist ny, i, and cpey such that e
is an element in [concept : cpep, Sut, concept—order : ny, element—order : ip, Cpepr]. An element
e; is an element in [concept : c,ep, Cny] if there exist ny, ine, and cpepp, such that e; is an element

in [concept : Cpep, Cng, concept—order : ny, element—order : int, Cpepin]-

7.2.3. Kinds of orders in the context of concepts

A number n; is an order in [e;, concept : Cpep, Sit, concept—order :, cpep] if € is an element
in [concept : cnep, Sit, concept—order : ny, Cpep]. A number n, is an order in [e;, concept :
Cneps Cnf, concept—order :, Cpepin] if € is an element in [concept : cuep, Cny, concept—order
Ty, Cncpl.n]]-

A number n; is an order in [e;, concept : Cpep, Sy, element—order : iy ] if € is an element
in [concept : cpep, Su, concept—order : ny, element—order : iy]. A number n, is an order in
[[el, concept : Cpep, Cnf, element—order : int]] if ¢; is an element in [[concept : Cnep, Cnf, CONCEPt—
order : ng, element—order : i,].

A number n; is an order in [e;, concept : cuep, S, concept—order : | if e is an element in
[concept = cnep, sut, concept—order : ng]]. A number n, is an order in [e;, concept : Cpep, Cny,

concept—order : | if e; is an element in [concept : ¢y, Cny, concept—order : ny.

7.2.4. Kinds of orders in the context of elements

A number i,; is an order in [e;, concept : Cpep, Str, element—order :, cpep] if € is an element
in [concept : Cpep, Sit, €lement—order : ing, Cpepr]. A number i, is an order in [e;, concept :
Creps Cnf element—order :, chepn] if € is an element in [concept : cuep, Cnf, element—order :
Z.nta Cncpl.n]]-

A number i, is an order in [e;, concept : Cpep, Stt, concept—order : ny] if e; is an element

in [concept : Cpep, Sy, concept—order : ny, element—order : i,]. A number i, is an order in
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[[el,concept : cncp,cnf,concept—order : nt]] if ¢; is an element in [[concept : Cpeps Cnf, CcONCEPt—
order : ng, element—order : iy].

A number i, is an order in [e;, concept : Cpep, S, element—order : | if ¢ is an element in
[concept : cpep, sit, element—order : iy,]. A number i, is an order in [e;, concept : Cpep, Cuf,

element—order : | if ¢; is an element in [concept : ¢pep, Cng, element—order : iy].

7.2.5. Kinds of concretizations

A conceptual ¢,y is a concretization in [e;, concept : ¢ep, Sut, concept—order : ny] if e, is an
element in [concept : Cpep, Sit, concept—order : ng, Cpep]. A conceptual ¢,epy is a concretization
in [e;, concept : cuep, Cny, concept—order : ny if €, is an element in [concept : cyep, Cnf, concept—
order : ng, Coepln]l-

A conceptual ¢,y is a concretization in [e;, concept : Cuep, Sit, element—order : i) if € is an
element in [concept : cuep, Sut, element—order : ing, Cpep]]. A conceptual Cpep.p 1S a concretization
in [[e;, concept : cuep, Cny, element—order : i) if €; is an element in [concept : cyep, Cnf, element—
order : int, Cnepin]-

A conceptual ¢,y is a concretization in [[e;, concept : ¢pep, Sti] if € is an element in [concept :
Cnep» St cncpl]]. A conceptual ¢,epr.p i a concretization in [e1, concept : Cnep» Cn f]] if ¢; is an element

in [concept : Cpep, Cufy Crepinl-

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :2,—2: cm,—1 : perimeter,0 : e, 49,1 : rectangle, 2 : Euclidean,3 : 2), and
[support syu] = {cner1, Cner2}- Then the following properties hold:

— 10, inch, area, €, 41 are elements in [concept : triangle, su;

—2, cm, perimeter, e 42 are elements in [concept : rectangle, sy];

—10, inch, area, e 41, 2, cm, perimeter, €49, triangle, rectangle are elements in
[concept : Eucludian, syl

—10, inch, area, €41, 2, cm, perimeter, e, 4.2, triangle, rectangle, FEucludian are
elements in [concept : 2, syl

— Cper1 18 @ concretization in [concept : triangle], [concept : Eucludian], [concept : 2]
in [ss];

— Cper2 18 & concretization in [concept : rectangle], [concept : Eucludian], [concept : 2]
in [s4];

—1is an order in [e; 42, concept : rectangle, sy, concept—order :J;
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— 0 is an order in [e; 41, concept : triangle, sy, element—order :];
— —1is an order in [area, concept : triangle, sy, element—order :|;

— —2 is an order in [em, concept : Eucludian, sy, element—order :].
7.3. The property of direct concepts

Proposition 6. If ¢, is a concept in [sy] and ¢; is an element in [concept : ¢pep, S, concept—
order : 1], then ¢, is either an individual in [s;], or €; is an attribute in [sy].

Proof. This follows from the definition of direct concepts. O
7.4. The content of concepts

The content of a concept describes its semantics.

A set s, is the content in [concept : Cpep, Stt, concept—order : ny, element—order : ing, Cpep] if
s¢ is the set of all elements in [concept : c,ep, S, concept—order : ny, element—order : ing, Cpepl].-
A set s; is the content in [concept : Cpep, Cnf, concept—order : ny, element—order : ing, Cpepin]
if s; is the set of all elements in [concept : Cpep, Cnf, concept—order : ny, element—order :
inta Cncpl.n]] .

A set s; is the content in [concept : Cpep, Stt, concept—order : ng, element—order : iy if s; =
Ucmplﬂsw]] si[concept : Cpep, i, concept—order : ny, element—order : i, Cpept]]. A set s, is the
content in [concept : Cpep, Cng, concept—order : ny, element—order : iy] if s, = Ucncpm[[cnf]] Sy
[concept : cpep, cnf, concept—order : ny, element—order : int, Cpepin]-

A set s; is the content in [concept : cnep, Sit, concept—order : ni] if s, = |, . si[concept :
Creps St concept—order : ny, element—order : i,]. A set s, is the content in [concept : ¢uep, Cnf,
concept—order : n if s, = Uim ny si[concept : cuep, Cny, concept—order : ny, element—order :
int]]-

A set s; is the content in [concept : ¢hep, Ste] if ¢ = |J

n, St [[concept * Cneps St concept—order :

ng. A set s; is the content in [concept : cuep, cuy] if s¢ = U, sifconcept : cpep, cny, concept—
order : n].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (—3:2,—2: em, —1 : perimeter,0 : e, 49,1 : rectangle, 2 : Euclidean, 3 : 2), and
[support sy] = {cne1, Cner2}- Then the following properties hold:

— {10, inch, area, e; 41} is the content in [concept : triangle, su];

— {2, em, perimeter, e; 42} is the content in [concept : rectangle, sy
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— {10, inch, area, e, 41,2, cm, perimeter, e, 4.9, triangle, rectangle} is the content in
[concept : Eucludian, syl);
— {10, inch, area, e, 41,2, cm, perimeter, e, 4.9, triangle, rectangle, Eucludian} is the

content in [concept : 2, s4].
7.5. Mediators
7.5.1. Mediators, elements, degrees

An element e;; is a mediator in [e;, concept : cyep, Sit, concept—order : ny, element—order :
int, Cnept] 1f €7 1s an element in [concept : cyep, S, concept—order : ny, element—order : int, Chept]s
er1 is an element in [Cpeprs ine1], and iy < i1 < my. It is between e and cpep I Cpep
in the position 4,.1, thus separating e; from ¢, In cpep. An element e;; is a mediator
in [e;, concept : Cpep, Cnf, concept—order : ny, element—order : in, Cpepin] if € is an element
in Jeoncept : Cpep, Cny, concept—order : ny, element—order : ing, Cpepin], €1 is an element in
[[Cncpl.na int.l]]7 and Z-nt < int.l < Ty

An element e;; is a mediator in [e;, concept : cpep, Sut, concept—order : ny, element—order :
int, Cnept] if there exists i,,;1 such that e, is a mediator in [e;, concept : ¢pep, Stt, concept—order :
ng, element—order : int, Cpep]]. An element e;; is a mediator in [e;, concept : cpep, Cn g, concept—
order : ny,element—order : in, Coeprn] if there exists i,.; such that e;; is a mediator in
[er, concept : Cuep, Cnf, concept—order : ny, element—order : ing, Cpepin]-

An element ¢; is an element in [concept : Cpep, Stt, concept—order : ng, element—order
int, Cnept, Mmediator—degree : ngq] if € is an element in [concept : cpep, Sut, concept—order
ng, element—order : ing, Cpepr]] and ngeq is the number of orders iy 1 in [¢pepr, €] such that i, <
int1 < M. It is separated from cpe, in Cuep DY Mgr1 of mediators. An element e; is an element
in Jeoncept : cuep, Cnf, concept—order : ny, element—order : ing, Coepln, mediator—degree : g1
if e, is an element in [concept : Cpep, Cny, concept—order : ny, element—order : iy, Cpeprn] and
Ngt.1 is the number of orders i,:1 in [Cpepin, €] such that i,y < ipe1 < 0.

A number ng; is a degree in [e;, concept : Cpep, Sit, concept—order : ny, element—order :
ints Cnepl, mediator—degree : | if e is an element in [concept : cuep, Sut, concept—order : ny,
element—order : int, Cpepi, mediator—degree : ng:1]. It specifies how many mediators separate
e from cpep In Chepr. A number ngq is a degree in [e;, concept @ Cpep, Cng, concept—order
ng, element—order : iny, Cpepin, mediator—degree : | if e, is an element in [concept : cpep, Cny,

concept—order : ng, element—order : int, Cpepin, mediator—degree : ng1].
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7.5.2. Kinds of elements

An element ¢; is an element in [concept : Cuep, S, concept—order : ng, element—order
int, mediator—degree : ng 1] if there exists ¢, such that e; is an element in [concept
Creps Stt, concept—order : ng, element—order : in, Cpep, mediator—degree : ng1]]. An element
e is an element in [concept : Cpep, Cny, concept—order : ng, element—order : iy, mediator—
degree : ng 1] if there exists ¢,ep., such that e; is an element in [concept : Cpep, Cnf, concept—
order : ng, element—order : int, Cnepl.n, mediator—degree : Ngq].

An element e; is an element in [concept : cpep, Su, concept—order : ny, Cpepr, mediator—
degree : ngq] if there exists i,; such that e; is an element in [concept : ¢pep, Sut, concept—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[concept : Cpep, Cnf, concept—order : ng, Cpepin, mediator—degree : ng 1] if there exists i,; such
that ¢, is an element in [concept : cpep, Cny, concept—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

An element ¢; is an element in [concept : Cpep, Sy, element—order : iy, Cpepr, mediator—
degree : ngq] if there exists n, such that e; is an element in [concept : ¢pep, Sut, concept—order :
ng, element—order : ing, Chepr, mediator—degree : ngeq1].  An element e; is an element in
[concept : cuep, Cny, element—order : in, Cpepin, mediator—degree : ng.1] if there exists n, such
that e; is an element in [concept : cpep, Cng, concept—order : ng,element—order : int, Cnepln,
mediator—degree : Ng1].

An element e; is an element in [concept : Cpep, Str, concept—order : ng, mediator—degree :
Nat.1]] if there exist i,; and ¢pey such that e is an element in [concept : Cpep, S, concept—order :
ng, element—order : ing, Chepr, mediator—degree : ng1]. An element e; is an element in
[concept : cuep, Cnf, concept—order : ny, mediator—degree : ng 1] if there exist i, and cpepin
such that e; is an element in [concept : ¢,ep, Cnr, concept—order : ny, element—order : ing, Cnepln,
mediator—degree : N 1].

An element ¢; is an element in [concept : cpep, S, element—order : iy, mediator—degree :
nata] if there exist n; and ey such that e; is an element in [concept : ¢pep, Sit, concept—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[concept : Cpep, Cnf, element—order : iy, mediator—degree : ng 1] if there exist n; and chepin
such that ¢; is an element in [concept : cuep, Cnyf, concept—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

An element e, is an element in [concept : cuep, Stt, Cnepi, mediator—degree : nge 1] if there exist
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n; and i, such that e; is an element in [concept : cpep, Sit, concept—order : ny, element—order :
int, Cnept, Mmediator—degree : ng1]. An element e; is an element in [concept : Cpep, Cnf, Crepins
mediator—degree : ng 1] if there exist n; and i, such that e; is an element in [concept :
Cnep, Cnf, cOncept—order : ny, element—order : int, Cpepi.n, mediator—degree : Nat.1]-

An element ¢; is an element in [concept : cpep, S, mediator—degree : ng 1] if there exist ny,
int, and Cpep such that e; is an element in [concept : cpep, Str, concept—order : ny, element—
order : int, Coepl, mediator—degree : ng 1] An element e; is an element in [concept : cuep, o,
mediator—degree : ng 1] if there exist ny, i, and cpepn such that e; is an element in [concept :

Creps Cnf > concept—order : ng, element—order : ing, Cpepin, mediator—degree : ng 1]

7.5.3. Kinds of degrees

A number ng; is a degree in [e;, concept : Cnep, Sit, concept—order : ny, element—order :
int, mediator—degree : | if e; is an element in [concept : cpep, S, concept—order : ny, element—
order : in, mediator—degree : ng1]]. A number ng, is a degree in [e;, concept : Cuep, Cuf,
concept—order : n;, element—order : iy, mediator—degree : | if e; is an element in [concept :
Cneps Cnf, concept—order : ny, element—order : iy, mediator—degree : ng1].

A number ny ;1 is a degree in [e;, concept : Cpep, Sit, concept—order : ny, Cpepr, mediator—
degree : | if e; is an element in [concept : cpep, S, concept—order : nyg, Cpep, mediator—degree :
Nat.1]]. A number ng, 1 is a degree in [e;, concept : Cpep, Cnf, concept—order : ny, Cpepl.n, mediator—
degree : | if e; is an element in [concept : cpep, Cny, concept—order : ny, Cpepin, mediator—degree :
nat,l]]-

A number n,.; is a degree in [e;, concept : cuep, S, element—order : in, Cpepr, mediator—
degree : | if ¢; is an element in [concept : cyep, Sut, element—order : int, Cpepr, mediator—degree :
Nata]. A number ng; is a degree in [e;, concept : Cpep, Cng, element—order : ing, Cpepins
mediator—degree : | if €, is an element in [concept : Cuep, Cny, element—order : ing, Cneplin,
mediator—degree : N 1].

A number n,.; is a degree in [e;, concept : Cpep, Su, element—order : i, Cpepr, mediator—
degree : ]| if ¢, is an element in [concept : Cpep, Sit, Crepr, mediator—degree : ng1]. A number
Nt 18 a degree in [e;, concept : Cpep, Cnf, €lement—order : ing, Cpepin, mediator—degree : | if ¢
is an element in [concept : cuep, Cnfs Cnepln, Mmediator—degree : N 1]

A number n, ; is a degree in [e;, concept : cpep, S, concept—order : ny, mediator—degree : |

if €, is an element in [concept : cuep, S, concept—order : ng, mediator—degree : ng1]. A
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number nq ; is a degree in [e;, concept : Cpep, Cnf, concept—order : ny, mediator—degree : | if ¢
is an element in [concept : cyep, Cnf, concept—order : ny, mediator—degree : Ng1].

A number ng 1 is a degree in [e;, concept : Cuep, Sit, element—order : i, mediator—degree : |
if €; is an element in [concept : cuep, Su, element—order : iy, mediator—degree : ngq]. A
number ny ;1 is a degree in [e;, concept : chep, Cnf, element—order : iy, mediator—degree : | if
e; is an element in [concept : cyep, Cny, element—order : iy, mediator—degree : ng.1].

A number nyq is a degree in [e;, concept : Cuep, Sut, mediator—degree : || if ¢; is an element
in [concept : Cpep, Stt, mediator—degree : ng1]]. A number ng,; is a degree in [e;, concept :
Cneps Cnf> mediator—degree : || if e; is an element in [concept : ¢pep, Cng, mediator—degree : ngq].

P Let chun1 = (=3 : 10,—2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 10, -2 : inch,—1 : area,0 : f;,2 : Euclidean,3 : 2), and [support s;| =
{Cnei1, Cner2}. Then f, is an element in the following contexts:

— [concept : triangle, sy] with the decree 0 and without mediators;

— [concept : Euclidean, sy;] with the decree 1 and the mediator triangle;

— [concept : 2, sy;] with the decree 2 and the mediators triangle and Euclidean;

— [concept : Euclidean, s;;] with the decree 0 and without mediators;

— [concept : 2, 5] with the decree 1 and the mediator Euclidean.

7.6. Direct elements

An element ¢; is a direct element in [concept : cpep, Su, concept—order : n,, element—order :
l ncpsy Otty ty

int, Cnept] if € 1s an element in [concept : ¢pep, Sy, concept—order : ny, element—order : ing, Coepls

mediator—degree : 0]. An element ¢; is a direct element in [concept : ¢pep, Cny, concept—order :

ng, element—order : int, Cpepin] if € is an element in [concept : Cpep, Cnf, concept—order

ny, element—order : in, Cpepin, mediator—degree : 0].
7.6.1. Kinds of direct elements

An element ¢; is a direct element in [concept : ¢yep, Sy, concept—order : ny, element—order :
int] if there exists ¢,qp such that e; is a direct element in [concept : cuep, Sit, concept—order :
ng, element—order : ip, Coepin].  An element e; is a direct element in [concept : Cpep, Cuf,
concept—order : ng, element—order : i, if there exists ¢, such that e; is a direct element in
[concept : cuep, Cny, concept—order : ny, element—order : ing, Cpepin]-

An element ¢ is a direct element in [concept : Cpep, S, concept—order : ny, Cpep ] if there exists

int such that e; is a direct element in [concept : cpep, S, concept—order : ng, element—order :
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ints Cnept]- An element e; is a direct element in [concept : ¢nep, Cnf, concept—order : ng, Cpepin]
if there exists ¢,; such that ¢, is a direct element in [concept : cpep, Cnf, concept—order
nt, element—order : i, Cpepin]-

An element ¢ is a direct element in [concept : Cpep, S, element—order : iy, Coep] if there ex-
ists n, such that e; is a direct element in [concept : c,ep, s, concept—order : ny, element—order :
ints Cnept]- An element e; is a direct element in [concept : cpep, Cnf, element—order : ing, Cpepin]
if there exists n; such that e, is a direct element in [concept : cpep, Cpnf, concept—order
ng, element—order : int, Cpepin]-

An element ¢; is a direct element in [concept : ¢pep, Sy, concept—order : ng] if there exist i,
and ¢,y such that e; is a direct element in [concept : cpep, Str, concept—order : ny, element—
order : int, Cnept]. An element e is a direct element in [concept : Cpep, Cnf, concept—order : ng]| if
there exist i,¢ and ¢y, such that e is a direct element in [concept : ¢pep, Cnf, concept—order :
nt, element—order : int, Cnepin]-

An element ¢, is a direct element in [concept : cuep, S, element—order : i,] if there exist n
and ¢,y such that e; is a direct element in [concept : cpep, S, concept—order : ny, element—
order : in, Coept]. An element e; is a direct element in [concept : Cpep, oy, element—order : i,
if there exist n; and ¢y, such that e is a direct element in [concept : ¢ep, Cnf, concept—order :
ng, element—order : int, Cpepin]-

An element ¢; is a direct element in [concept : Cpep, Stty Cnep]] if there exist n, and i, such
that ¢; is a direct element in [concept : ¢yep, S, concept—order : ny, element—order : int, Cpepl]-
An element ¢ is a direct element in [concept : Cpep, Cnf, Crepin] if there exist n; and 4, such that
e; is a direct element in [concept : cyep, Cnf, concept—order : ny, element—order : ing, Cpepin]-

An element ¢, is a direct element in [concept : cpep, S]] if there exist ng, ine, and c,ep such
that e; is a direct element in [concept : cpep, Sit, concept—order : ny, element—order : ing, Cpepi]-
An element e, is a direct element in [concept : ¢,ep, Cnf] if there exist ny, iy, and ¢,epr, such that

e; is a direct element in [concept : cpep, Cnyf, concept—order : ny, element—order : ing, Cpepin]-

@D Let cpepr = (=3 : 10, =2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and
Stt = (Cnept  3). Then the following properties hold:
— f, is a direct element in [concept : triangle, sy] that means that f, is a triangle in
[[Stt]];
— triangle is a direct element in [concept : Eucludian, su] that means that classification

of geometric figures in Eucludian space includes triangles in [sy];
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— FEucludian is a direct element in [concept : 2, sy] that means that classification of

two-dimensional spaces includes Eucludian space in [sy].

7.7. The direct content of concepts

A set s; is the direct content in [concept : Cpep, Stt, concept—order : ny,element—order :
ints Cnept]) if st 1s the set of all direct elements in [concept : ¢pep, S, concept—order : ny, element—
order : ipt,Cnept]. A set s; is the direct content in [concept : cpep, Cng, concept—order :
ng, element—order : iy, Coepin] if S¢ is the set of all direct elements in [concept : cpep, Cny,

concept—order : ng, element—order : ing, Cpepin]-

A set s; is the direct content in [concept : Cpep, Sit, concept—order : ny, element—order : iy
if s, = Ucncpz[[m]] si[concept : Cpep, S, concept—order : ny, element—order : ing, Coep]. A set
s¢ is the direct content in [concept : cCpep, Cny, concept—order : ny, element—order : iy if

S¢ = Ucncpm[[cnf]] s[concept : Cpep, Cng, concept—order : ny, element—order : ing, Cpepin]-

A set s; is the direct content in [concept : cpep, s, concept—order = ng] if s, = U, . sl
concept : Cpep, Stt, concept—order : ng, element—order : iy]. A set s; is the direct content in
[concept : cpep, cny, concept—order = n.] if s, = U, _, silconcept : cnep, cny, concept—order :

ng, element—order : iy].

A set s; is the direct content in [concept : cnep, s4]] if s¢ = U, si[concept : cuep, 51, concept—

n

order : my]]. A set s; is the direct content in [concept : cuep, Cny] if 50 = Unt s¢[concept -

Creps Cnf, cONCEpt—order : ny.

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 1 10,—2 : inch,—1 : area,0 : e, 49,1 : triangle,2 : Riemannian,3 : 2),
Cnets = (=3 110, =2 :inch,—1 : area,0 : e 41,3 : 2), and [support su| = {Cne1, Cner2,
Cne3}- Then the following properties hold:

—{e1 g1, €142} s the direct content in [concept : triangle, su];

— {triangle} is the direct content in [concept : Eucludian, sy];

— {triangle} is the direct content in [concept : Riemannian, syl

— {Eucludian, Riemannian} is the direct content in [concept : 2, sy];

—{e1g1} is the direct content in [concept : 2, sy].

7.8. The content of concepts in the context of mediators
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A set s; is the content in [concept : cpep, Str, concept—order : ny, element—order : in, Coepi,
mediator—degree : ng 1] if s; is the set of all elements in [concept : cuep, S, concept—order :
ng, element—order : int, Coepr, mediator—degree : ngq]]. A set s; is the content in [concept :
Cneps Cnfs concept—order : ny, element—order : in, Cpepin, mediator—degree : ng1] if s; is the
set of all elements in [concept : cuep, Cuf, concept—order : ny,element—order : ing, Cpepins
mediator—degree : Ng1].

A set s; is the content in [concept : cuep, Su, concept—order : ny, element—order : i,
mediator—degree : ng1] if s; = Ucncpz[[Szt]] se[concept : chep, Str, concept—order : ny, element—
order : ing, Cepl, mediator—degree : ng1]l. A set s, is the content in [concept : cuep, Cnf,
concept—order : ny, element—order : i,, mediator—degree : ng.] if s, = Ucncpz.n[[cnf]] St
[concept : cpep, cnf, concept—order : ny, element—order : ing, Cpepl.n, mediator—degree : ngq].

A set s; is the content in [concept : ¢yep, i, concept—order : ny, mediator—degree : ngq] if
S = Uim<nt se[concept : Cpep, Sit, concept—order : ng, element—order : iy, mediator—degree :
Nat1]]. A set s, is the content in [concept : cpep, Cnf, concept—order : ny, mediator—degree :
Nata] if 84 = UW<W se[concept @ Cpep, Cng, concept—order : ng, element—order : i,:, mediator—
degree : ngiq].

A set s; is the content in [concept : cnep, 811, mediator—degree : ng.1] if s, = J,, si[concept :

n
Cneps Stt, concept—order : i, mediator—degree : ng1]. A set s, is the content in [concept :
Cneps Cny, mediator—degree @ nga] if s¢ = U, silconcept 1 cnep, cuy, concept—order : iy,
mediator—degree : N 1].
@D Let chu1 = (=3 : 10,—2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 :
2), Cha2 = (=3 : 10,2 : inch,—1 : area,0 : e 42,1 : triangle,2 : Riemannian,3 :
2), Cnas = (=3 : 10,—2 : inch,—1 : perimeter,0 : e 43,2 : Euclidean,3 : 2), and
[support su] = {Cne11s Cnet2s Cne3}- Then the following properties hold:
—{e1g1, €142} is the content in [concept : 2, sy, mediator—degree : 2];
—{e14.3} is the content in [concept : 2, sy, mediator—degree : 1];
—{area} is the content in [concept : 2, s, mediator—degree : 3];

— {perimeter} is the content in [concept : 2, sy, mediator—degree : 2].

8. Classification and interpretation of concepts

Concepts are classified according to their orders.

8.1. Concepts of the order 1
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A concept ¢ in [S4, 1] models a usual concept in [ss,;]. Elements in [concept : cpep, St

concept—order : 1 are attributes and individuals in [sy]].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (—3:2,=2: em, —1 : perimeter,0 : €. 42,1 : triangle,2 : Euclidean, 3 : 2), and
[support syu] = {cne1, ne2}- Then the following properties hold:

— the direct concept triangle models triangles in [sy]);

— the individuals ¢; 5.1 and e; 45 are elements of the order 0 of the direct concept triangle
in [sy] that means that e, ,; and e, are triangles in [sy];

— the attributes area and perimeter are elements of the order —1 of the direct concept
triangle in [[s;] that means that classification of numerical characteristics of triangles
includes area and perimeter in [sy];

— the attributes inch and cm are elements of the order —2 of the direct concept triangle
in [sy] that means that classification of units of measurement of numerical charac-
teristics of triangles includes inches and centimetres in [sy];

—the attributes 10 and 2 are elements of the order —3 of the direct concept triangle
in [sy] that means that classification of numeral systems for representing values of

numerical characteristics of triangles includes decimal and binary systems in [s;].
8.2. Concepts of the order 2

A concept ¢pep In [[S4, 2] models a concept space in [ss,:]. Elements in [concept : cpep, Si,

concept—order : 2 are attributes, individuals and direct concepts in [su]].

@D Let chaq = (=3 : 10,2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 12, =2 : em,—1 : perimeter,0 : e 42,1 : square,2 : Euclidean,3 : 2), and
[support sy] = {cner1, Cnar2}- Then the following properties hold:

— the concept space Euclidean models Euclidean space in [[sy];

—the direct concepts triangle and square are elements of the order 1 of the concept
space Fuclidean in [sy] that means that classification of geometric figures in Eu-
clidean space includes triangles and squares in [sy];

—the individuals e; 4,1 and €42 are elements of the order 0 of the concept space
Euclidean in [sy] that means that e, ,; and e, 42 are geometric figures in Euclidean
space in [sy];

— the attributes area and perimeter are elements of the order —1 of the concept space
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Euclidean in [sy] that means that classification of numerical characteristics of geo-
metric figures in Euclidean space includes area and perimeter in [sy];

—the attributes inch and cm are elements of the order —2 of the concept space
Euclidean in [s;] that means that classification of units of measurement of nu-
merical characteristics of geometric figures in Euclidean space includes inches and
centimetres in [sy];

— the attributes 10 and 2 are elements of the order —3 of the concept space Fuclidean
in [sy] that means that classification of numeral systems for representing values of
numerical characteristics of geometric figures in Euclidean space includes decimal and

binary systems in [s].
8.3. Concepts of the order 3

A concept ¢,¢p in [s4, 3] models a space of concept spaces in [s;,;]. Elements in [concept

Creps Stt, concept—order : 3] are attributes, individuals, direct concepts and concept spaces in
[[Stt]]'

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :2,—2: cm, —1 : perimeter,0 : €, 42,1 : square,2 : Riemannian,3 : 2), and
[support sy] = {cne11; Cner2}- Then the following properties hold:

— the concept space space 2 models two-dimensional space in [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
concept space space 2 in [s;;] that means that classification of two-dimensional spaces
includes Euclidean space and Riemannian space in [s4];

—the direct concepts triangle and square are elements of the order 1 of the concept
space space 2 in [sy] that means that classification of geometric figures in two-
dimensional space includes triangles and squares in [sy]);

— the individuals ¢; ;1 and e; 49 are elements of the order 0 of the concept space space 2
in [s]] that means that e; ;1 and e; 45 are geometric figures in two-dimensional space
in [su];

—the attributes area and perimeter are elements of the order —1 of the concept space
space 2 in [sy] that means that classification of numerical characteristics of geometric
figures in two-dimensional space includes area and perimeter in [sy]);

— the attributes inch and c¢m are elements of the order —2 of the concept space space 2
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in [[sy] that means that classification of units of measurement of numerical character-
istics of geometric figures in two-dimensional space includes inches and centimetres
in [su];

—the attributes 10 and 2 are elements of the order —3 of the concept space space
2 in [sy] that means that classification of numeral systems for representing values
of numerical characteristics of geometric figures in two-dimensional space includes

decimal and binary systems in [sy].
8.4. Concepts of higher orders

A concept pep in sS4, ne], where ny > 3, is classified and interpreted in the similar way (by

the introduction of the space of concept space spaces and so on.).

9. Structure of attributes

Attributes use the same terminology as concepts.

9.1. Direct attributes

The usual attributes in [s;,;] which are interpreted as characteristics of elements in [ss 4]

are modelled by the special kind of attributes in [sy], direct attributes in [sy].

9.1.1. Direct concepts

An element ¢; is a direct attribute in [sy, chep] if € is a attribute in [sy, 1, ¢hep]. An element
e, is a direct attribute in [c¢,f, Chepin] if € is a attribute in [c,r, 1, Cpepin]-

An element ¢; is a direct attribute in [s;] if there exists ¢,q, such that ¢; is a direct attribute
in [S¢, Crept]- An element e; is a direct attribute in [c,f] if there exists cepn such that e; is a

direct attribute in [¢,f, Cnepin]-

9.1.2. Concretizations

A conceptual ¢y is a concretization in [direct—attribute : e, si] if e; is a attribute in
[stts 1, cnept] . A conceptual cpepn i a concretization in [direct—attribute : e, ¢ f] if € is a
attribute in [cur, 1, Creprn]-

A conceptual ¢,y is a concretization in [sy, direct—attribute :] if there exists e; such that
Cnepl 18 & concretization in [direct—attribute : e, su]. A conceptual ¢,y 1S a concretization

in [c,f, direct—attribute :] if there exists e, such that e, 1S a concretization in [direct—
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attribute : e, cnf].

@D Let cuq1 = (=3 : 10,-2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),
Cnet2 = (—3: 10, -2 : inch, —1 : perimeter,0 : f,,1 : rectangle,2 : Euclidean,3 : 2), and
[support syu] = {cner1, Cner2}- Then the following properties hold:

—area and perimeter are direct attributes in sy;
— Cper1 18 a concretization in [direct—attribute : area, syl;

— Cna2 18 a concretization in [direct—attribute : perimeter, sy].

9.2. Elements of attributes
9.2.1. Elements, orders, concretizations

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
int, Cnept] 1f @yt is an attibute in [sy, e, Chept], € is an element in [cpepr, ine], and —ny < ipe. An
element e; is an element in [attribute : ay, .z, attribute—order : ny, element—order : ing, Cpepin]
if a; is an attibute in [c,f, ¢, Cpepin]s € 1s an element in [Cpepin, ine], and —ng < iy.

Thus, elements of the attribute a;; can be attributes of orders which are less than the order
of ay, individuals and concepts of all orders.

A number n; is an order in [[e;, attribute : ay, Sy, element—order : iy, Chep] if €, is an element
in [attribute : ay, sy, attribute—order : ny, element—order : in, Cpep]. It specifies the order in
[¢nepi, ane]. A number n, is an order in [e;, attribute : ay, ¢, f, element—order : ing, Cpepin] if €
is an element in [attribute : ay, ¢, attribute—order : n,, element—order : iy, Cpepin]-

A number i, is an order in [e;, attribute : ay, Sy, attribute—order : ny, cpep] if € is an ele-
ment in
lattribute : ay, sy, attribute—order : ng,element—order : in, Coep]. It specifies the order in
lcnepis €] A number i, is an order in [e;, attribute : ay, cnz, attribute—order : ng, Cpepin] if €
is an element in [attribute : ay, c,f, attribute—order : ng, element—order : int, Coepin]-

A conceptual ¢, is a concretization in [e;, attribute : ay, sy, attribute—order : ng, element—
order : iy if €, is an element in [attribute : ay, sy, attribute—order : ny, element—order :
ints Cnept])- 1t defines that e; is an element in [attribute : ay, sy, attribute—order : ny, element—
order : iy]. A conceptual ¢y, is a concretization in [e;, attribute : ay, c,r, attribute—order :
ng, element—order : i,] if € is an element in [attribute : au,cns, attribute—order : ny,

element—order : int, Cpepin]-

9.2.2. Kinds of elements
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An element ¢; is an element in [attribute : ay, sy, attribute—order : ng, element—order : i,]
if there exists ¢ such that e; is an element in [attribute : ay, sy, attribute—order : ny,
element—order : iy, Coep]. An element e is an element in [attribute : ay, ¢, f, attribute—order :
ng, element—order : i,] if there exists ¢pep., such that e; is an element in [attribute : ay, ¢, f,
attribute—order : ng, element—order : ing, Coepinl-

An element e; is an element in [attribute : agy, Sy, attribute—order : ny, cpep] if there exists i,
such that e; is an element in [attribute : ay, sy, attribute—order : ny, element—order : ing, Cpepl]-
An element e; is an element in [attribute : ay, ¢, r, attribute—order : ny, ceprn] if there exists
int such that e; is an element in [attribute : ay,cnf, attribute—order : ng,element—order :
Ints Crepln]-

An element e; is an element in [attribute : ay, Sy, attribute—order : int, Cpep ] if there exists ny
such that e; is an element in [attribute : ay, sy, attribute—order : ny, element—order : int, Cpepl]-
An element ¢; is an element in [attribute : ay, ¢, f, attribute—order : iy, Coeprn] if there exists
n, such that e; is an element in [attribute : ay,c,y, attribute—order : n,, element—order :
Ints Crepln-

An element e; is an element in [attribute : ay, sy, attribute—order : ny] if there exist i,; and
Cnept SUch that e; is an element in [attribute : ay, sy, attribute—order : ng, element—order :
int, Cnept]- An element e; is an element in [attribute : ay, ¢, attribute—order : ]| if there exist
int and Cpeprn Such that e is an element in [attribute : ay, c,r, attribute—order : n,, element—
order : int, Cnepin]-

An element ¢; is an element in [attribute : ay, sy, element—order : i, if there exist n, and
Cnept SUch that e; is an element in [attribute : au, sy, attribute—order : ny, element—order :
int, Cnept] - An element e; is an element in [attribute : ay, ¢, r, element—order : i,,] if there exist
ny and Cpeprpn, such that e; is an element in [attribute : ay, c,f, attribute—order : n,, element—
order : int, Cnepin]-

An element ¢ is an element in [attribute : aw, S, Cnepr]) if there exist n, and 4, such that e; is
an element in [attribute : ay, Sy, attribute—order : ny, element—order : iy, Coep]. An element
e; is an element in [attribute : ay, Cpf, Coeprn] if there exist n; and i, such that e; is an element
in [attribute : ay, cnz, attribute—order : ny, element—order : ing, Cpepin]-

An element ¢; is an element in [attribute : ay, sy if there exist ny, iy, and ¢,y such that e; is
an element in [attribute : ay, sy, attribute—order : ngy, element—order : ing, Cpep]. An element

e, is an element in [attribute : ay, c,f] if there exist ny, i, and cpeprn such that e; is an element
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in [attribute : aw, cnf, attribute—order : ng, element—order : int, Cpepin]-

9.2.3. Kinds of orders in the context of attributes

A number n, is an order in [e;, attribute : ay, Sy, attribute—order :, cpep] if €, is an element
in [attribute : ay, sy, attribute—order : ny, cpep]]. A number n, is an order in [e;, attribute :
ity Cnf, attribute—order :, cheprn] if € is an element in [attribute : ay, c,p, attribute—order :
Ty, Cncpl.n]]-

A number n, is an order in [e;, attribute : ay, sy, element—order : i) if €, is an element
in [attribute : ay, Sy, attribute—order : ng, element—order : iy]. A number n; is an order in
ler, attribute = ay, c,p, element—order : i, if €, is an element in [attribute : ay, c,f, attribute—
order : ng, element—order : i,].

A number n, is an order in [e;, attribute : ay, sy, attribute—order : | if e, is an element
in [attribute : ay, Sy, attribute—order : ng]. A number n, is an order in [e;, attribute

e, Cnf, attribute—order : | if ¢ is an element in [attribute : ay, .y, attribute—order : ng.

9.2.4. Kinds of orders in the context of elements

A number i,,; is an order in [e;, attribute : ay, Sy, element—order :, ¢y if € is an element
in [attribute : ay, sy, element—order : int, Coep]. A number 4, is an order in [e;, attribute :
ity Cnf, element—order :, Cpepin] if € is an element in [attribute : ay,c,yr, element—order :
Z.mf; Cncpl.n]]-

A number i, is an order in [e;, attribute : ay, sy, attribute—order : ng) if €, is an element
in [attribute : ay, sy, attribute—order : ny, element—order : i,]. A number i,, is an order in
ler, attribute : ay, c,f, attribute—order : n if €; is an element in [attribute : ay, c,f, attribute—
order : ng, element—order : iy].

A number i,; is an order in [e;, attribute : ay, Sy, element—order : | if e, is an element
in [attribute : ay, sy, element—order : i,]. A number i, is an order in [e;, attribute

i, Cny, element—order : | if e, is an element in [attribute : ay, ¢, r, element—order : iy].

9.2.5. Kinds of concretizations

A conceptual ey is a concretization in [e;, attribute : aw, sy, attribute—order : ng]| if €, is
an element in [attribute : ay, Sy, attribute—order : ny, cuepl. A conceptual ¢,ep, is a con-
cretization in [e;, attribute : ay, cnz, attribute—order : ny]| if €, is an element in [attribute

Qtt, Cnf, attribute—order : ng, Coepin]-
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A conceptual ¢,y is a concretization in [e;, attribute : asy, Sy, element—order : i) if € is
an element in [attribute : ay, su,element—order : in, Cpep]]. A conceptual cpep, is a con-
cretization in [e;, attribute : ay, c,yp, element—order : i) if € is an element in [attribute :
Qtt, Cnf, €lement—order : int, Cpepin]-

A conceptual ¢,y is a concretization in [e;, attribute : ay, su] if €; is an element in [attribute :
ity Stt, Cnepl]]- A conceptual ¢, 1S a concretization in [e;, attribute : ay, ¢, ] if € is an element

in [attribute : agy, Cof, Cnepln]l-

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 10, =2 : inch,—1 : volume,0 : €, 49,1 : pyramid,2 : Riemannian,3 : 3),
and [support sy| = {Cnei1, Cnero}. Then the following properties hold:

— 2, Euclidean, triangle, e; 41 are elements in [attribute : area, sy];

— 3, Riemannian, pyramid, e, 4 are elements in [attribute : volume, sy]);

— 2, Fuclidean, triangle, e, 41, 3, Riemannian, pyramid, €, 42, area, volume are ele-
ments in [attribute : inch, sy];

— 2, Buclidean, triangle, e, 4.1, 3, Riemannian, pyramid, e; 42, area, volume, inch are
elements in [attribute : 10, sy];

— Cpe1 18 & concretization in [attribute : area], [attribute : inch], [attribute : 10] in
[[Stt]]Q

— Cpa2 18 a concretization in [attribute : volume], [attribute : inch], [attribute : 10] in
[se]:;

—1is an order in [e; 42, attribute : volume, sy, attribute—order :J;

—0 is an order in [e; 41, attribute : area, sy, element—order :];

— 1 is an order in [triangle, attribute : area, s, element—order

— 2 is an order in [Fucludian, attribute : inch, sy, element—order :].
9.3. The property of direct attributes

Proposition 7. If ay is an attribute in [s;] and e; is an element in [attribute : ay, sy,
attribute—order : 1], then e is either an individual or ¢; is a concept in [sy].

Proof. This follows from the definition of direct attributes. O
9.4. The content of attributes

The content of a attributes describes its semantics.
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A set s; is the content in [attribute : ay, sy, attribute—order : ng, element—order : int, Cpepi]
if s; is the set of all elements in [attribute : ay, Sy, attribute—order : ny,element—order :
ints Cepl]- A set s, is the content in [attribute : ay, ¢, attribute—order : ny, element—order :
ints Cnepln] if St 1s the set of all elements in [attribute : ay, c,f, attribute—order : n;, element—
order : int, Cnepin]-

A set s, is the content in [attribute : ay, sy, attribute—order : ngy, element—order : i, if s, =
Ucncpz[[at]] silattribute @ ay, sy, attribute—order : ny, element—order : int, Cpept]. A set sy is the
content in [attribute : ay, cny, attribute—order : ng, element—order : i,] if s, = Ucncpm[[cnf]] S¢
lattribute : ay, cnf, attribute—order : ny, element—order : int, Cocpln]-

A set s; is the content in [attribute : ay, sy, attribute—order : ny]| if s; = U_nt<im se]
attribute : ay, Sy, attribute—order : ny, element—order : iy]. A set s, is the content in

lattribute : ay, cnp, attribute—order : n,] if s¢ = U silattribute : ay, cnp, attribute—

—nt<int
order : ng, element—order : i,].

A set s; is the content in [attribute : ay, sy] if s, = U,, si[attribute : ay, sy, attribute—

order : ;. A set s; is the content in [attribute : ay,caf]) if s¢ = U, si[attribute : ay, cny,
attribute—order : n].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :10,—=2 : inch,—1 : volume,0 : e 42,1 : pyramid,2 : Riemannian,3 : 3),
and [support si| = {¢ne1, Cnao}. Then the following properties hold:

—{2, Euclidean, triangle, e; 41} is the content in [attribute : area, sy;

— {3, Riemannian, pyramid, e, , -} is the content in [attribute : volume, su];

—{2, Euclidean, triangle, e, 41, 3, Riemannian, pyramid, e; 4.2, area, volume} is the
content in [attribute : inch, syu;

—{2, Euclidean, triangle, e, 41, 3, Riemannian, pyramid, e, 4.2, area, volume, inch}  is

the content in [concept : 10, sy].

9.5. Mediators
9.5.1. Mediators, elements, degrees

An element e, is a mediator in [[e;, attribute : ay, sy, attribute—order : ng, element—order :
ints Cnepls ine.1]] if € 1s an element in [attribute : ay, su, attribute—order : ng, element—order :
ints Cnept]]s €11 18 an element in [cheprs inea], and —ny < iy < ine. It is between ay and e in

Cnepi 1N the position 7,1, thus separating e; from ay in cpep. An element e;; is a mediator in
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[er, attribute : a, ¢, f, attribute—order : ng, element—order : int, Cpepin, ine1] if € is an element
in [attribute : ay, c,y, attribute—order : ng, element—order : in, Cocpinl, €11 1 an element in
[[Cncpl.na int.l]]7 and —ny < Z.mf.l < int-

An element e;; is a mediator in [[e;, attribute : ay, sy, attribute—order : ng, element—order :
int, Cnept] 1f there exists i,.1 such that e is a mediator in [e;, attribute : ay, sy, attribute—
order : ng, element—order : int, Cpepl, ine1]]. An element e;; is a mediator in [e;, attribute :
ity Cnf, attribute—order : ng, element—order : i, Coepin] if there exists i,.1 such that e;; is a

mediator in [e;, attribute : ay, c,y, attribute—order : ny, element—order : ine, Coepin, int.1])-

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
ints Cnepl, mediator—degree : ng.1] if e; is an element in [attribute : ay, sy, attribute—order :
ng, element—order : iy, Cpept]] and ngeq is the number of orders 4, 1 in [¢pep, €] such that —n, <
int.1 < ine. It is separated from ay in Cpep by 14e1 of mediators. An element e; is an element in
[attribute : ay, c,y, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ng 1]
if ¢; is an element in [attribute : ay, cof, attribute—order : ny, element—order : int, Cpepin] and

Nt is the number of orders i,;1 in [Cpepin, €] such that —ny <ineq < i

A number n,.; is a degree in [e;, attribute : ay, sy, attribute—order : ng, element—order :
ints Cnepl, mediator—degree : | if e is an element in [attribute : ay, sy, attribute—order
ng, element—order : iy, Cpepr, mediator—degree : ngq]. It specifies how many mediators sepa-
rate e; from ay in ¢pey. A number ng g is a degree in [e;, attribute : ay, ¢, 5, attribute—order :
ng, element—order : ing, Cpepln, mediator—degree : || if €; is an element in [attribute : ay, ¢y,

attribute—order : ny, element—order : in, Cocpl.n, mediator—degree : N q].

9.5.2. Kinds of elements

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
int, mediator—degree : ng 1] if there exists ey such that e, is an element in [attribute
ity Stt, attribute—order : ng, element—order : int, Cpepi, mediator—degree : ng1]. An element
e; is an element in [attribute : ay, c,y, attribute—order : ny, element—order : i, mediator—
degree : ng.1] if there exists ¢pep, such that e; is an element in [attribute : ay, ¢, f, attribute—
order : ng, element—order : int, Cnepl.n, mediator—degree : ngq].

An element ¢; is an element in [attribute : ay, sy, attribute—order : ny, Cpep, mediator—
degree : ng1] if there exists i,; such that e, is an element in [attribute : ay, sy, attribute—

order : ng, element—order : int, Cpepi, mediator—degree : ng 1. An element e; is an element
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in [attribute : au,cnf, attribute—order : ng, Cpepin, mediator—degree : ngeq] if there exists
int such that e; is an element in [attribute : ay,c,y, attribute—order : ny, element—order :
ity Cnepl.n, Mediator—degree : Ngq].

An element e; is an element in [attribute : ay, Sy, element—order : iy, Cpep, mediator—
degree : ng 1] if there exists n, such that e; is an element in [attribute : ay, sy, attribute—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[attribute : ay, cnf, element—order : int, Cpepin, mediator—degree : ng 1] if there exists n; such
that e; is an element in [attribute : ay, cny, attribute—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

An element ¢, is an element in [attribute : ay, Sy, attribute—order : ny, mediator—degree :
Nat1] if there exist 4,,; and ¢,qy such that e; is an element in [attribute : ay, Su, attribute—order :
ng, element—order : in, Cpepr, mediator—degree : ng1]l.  An element e; is an element in
[attribute : ay, c,y, attribute—order : ny, mediator—degree : ng 1] if there exist i,; and cpepin
such that e; is an element in [attribute : ay, c,y, attribute—order : ny, element—order : iy,
Crepl.n, Mediator—degree : Mg 1.

An element ¢; is an element in [attribute : ay, Sy, element—order : iy, mediator—degree :
Nata] if there exist ny and ¢,q, such that e; is an element in [attribute : ay, Su, attribute—order :
ng, element—order : in, Coepr, mediator—degree : ngq]].  An element e is an element in
[attribute : ay, cny, element—order : i, mediator—degree : ng1] if there exist n; and cpepin
such that e; is an element in [attribute : ay, c,y, attribute—order : ny, element—order : iy,
Cnepln, mediator—degree : N 1]

An element ¢; is an element in [attribute : aw, Str, Cnept, mediator—degree : ng 1] if there exist
ny and i,,; such that e; is an element in [attribute : ay, sy, attribute—order : ny, element—order :
ints Cnepl, mediator—degree : ng1]. An element e is an element in [attribute : ay, Cof, Cnepln,
mediator—degree : ng 1] if there exist n; and i, such that ¢; is an element in [attribute :
Qut, Cnf, attribute—order : ny, element—order : ing, Cpepl.n, mediator—degree : ng1].

An element ¢; is an element in [attribute : ay, Sy, mediator—degree : g if there exist ny,
int, and ey such that e; is an element in [attribute : ay, su, attribute—order : n,, element—
order : ing, Cpepi, mediator—degree : ng1]. An element e; is an element in [attribute : ay, ¢,
mediator—degree : ng 1] if there exist n¢, int, and cpepr, such that e; is an element in [attribute :

ity Cnf, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ng 1]

9.5.3. Kinds of degrees
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A number ng.; is a degree in [e;, attribute : ay, sy, attribute—order : ng, element—order :
int, mediator—degree : | if ¢; is an element in [attribute : ay, sy, attribute—order : ny, element—
order : iy, mediator—degree : ng1]]. A number ng g is a degree in [e, attribute : ay, ¢y,
attribute—order : ng, element—order : i,;, mediator—degree : | if e, is an element in [attribute :
e, Cnf, attribute—order : ng, element—order : iy, mediator—degree : ng 1]

A number ng is a degree in [e;, attribute : ay, sy, attribute—order : ng, chep, mediator—
degree : || if e; is an element in [attribute : ay, Sy, attribute—order : ng, Cpep, mediator—degree :
Nat.1]. A number ng is a degree in [e;, attribute : ay,c,y, attribute—order : ny, Cpepln,
mediator—degree : | if e, is an element in [attribute : auy, c,y, attribute—order : ny, Cpepin,
mediator—degree : Ng1].

A number ng; is a degree in [e;, attribute : ay, s, element—order : in, Chep, mediator—
degree : || if ¢; is an element in [attribute : ay, su, element—order : int, Cpepr, mediator—degree :
Nat.1]. A number ng,; is a degree in [e;, attribute : ay,cnf, element—order : ing, Cnepln,
mediator—degree : | if e; is an element in [attribute : ay,c,f, element—order : int, Cnepin,
mediator—degree : Ng1].

A number ng; is a degree in [e;, attribute : ay, sy, element—order : i, Cpep, mediator—
degree : | if ¢ is an element in [attribute : a, S, Cnepl, mediator—degree : ngq]. A number
Nat1 18 a degree in [e;, attribute : ay, c,f, element—order : iy, Cpepin, mediator—degree : | if ¢
is an element in [attribute : ay, chf, Cnepln, mediator—degree : ngq].

A number ng, 1 is a degree in [e;, attribute : ay, sy, attribute—order : ng, mediator—degree : |
if ¢, is an element in [attribute : ay, Sy, attribute—order : ny, mediator—degree : ng1]. A
number ny. 1 is a degree in [e;, attribute : ay, ¢, r, attribute—order : n,, mediator—degree : | if
e, is an element in [attribute : ay, ¢, f, attribute—order : ny, mediator—degree : ng1].

A number n,, ;1 is a degree in [e;, attribute : ay, Sy, element—order : iy, mediator—degree : |
if €, is an element in [attribute : ay, Sy, element—order : i, mediator—degree : ng1]. A
number ny ;1 is a degree in [e;, attribute : ay, cnf, element—order : iy, mediator—degree : | if
e; is an element in [attribute : ay, ¢, f, element—order : i,,, mediator—degree : ng1].

A number nyq is a degree in [e;, attribute : ay, sy, mediator—degree : | if ¢; is an element
in [attribute : ay, sy, mediator—degree : ng.1]. A number ng. is a degree in [e;, attribute :

ity Cnp, mediator—degree : || if €, is an element in [attribute : auw, ¢, p, mediator—degree : ng:1].

@D Let cu1 = (=3 : 10,—2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2),

Cnetz = (=3 : 10,2 : em,0 : f,,1 : triangle,2 : Euclidean,3 : 2), and [support sy| =



System Informatics (Cucremuas nudopmaruka), No. 7 (2016) 113

{Cnei.1, Cner2}. Then f; is an element in the following contexts:
— [attribute : area, sy;] with the decree 0 and without mediators;
— [attribute : inch, sy with the decree 1 and the mediator area;
— [attribute : 10, s] with the decree 2 and the mediators area and inch;
— [attribute : em, sy] with the decree 0 and without mediators;

— [attribute : 10, s;;] with the decree 1 and the mediator c¢m.

9.6. Direct elements

An element ¢ is a direct element in [attribute : ay, sy, attribute—order : ng, element—order :
ints Cnept] 1f € 1s an element in [attribute : ay, sy, attribute—order : ny, element—order :
int, Cnept, Mmediator—degree : 0]. An element e; is a direct element in [attribute : ay,cpy,
attribute—order : ny, element—order : int, Cpepin] if € is an element in [attribute : ay, c,y,

attribute—order : ng, element—order : iy, Coepr.n, mediator—degree : 0].

9.6.1. Kinds of direct elements

An element ¢; is a direct element in [attribute : ay, sy, attribute—order : ng, element—order :
int] if there exists c,qy such that e; is a direct element in [attribute : ay, Sy, attribute—order :
ng, element—order : iy, Coep].  An element e is a direct element in [attribute : ay,c,y,
attribute—order : ny, element—order : i,] if there exists ¢, such that e is a direct ele-
ment in [attribute : ay, ¢, f, attribute—order : ng, element—order : iy, Chepin]-

An element ¢; is a direct element in [attribute : ay, Sy, attribute—order : ng, ¢pep] if there
exists i,; such that e; is a direct element in [attribute : ay, sy, attribute—order : ny, element—
order : int, Coep]. An element e; is a direct element in [attribute : ay, ¢y, attribute—order :
N, Cnepin] 1f there exists 4,, such that e; is a direct element in [attribute : ay, cnp, attribute—
order : ng, element—order : int, Cpepin]-

An element ¢; is a direct element in [attribute : asy, s, element—order : ing, Cpep] if there
exists ny such that ¢; is a direct element in [attribute : ay, Sy, attribute—order : ny, element—
order : in, Cpept]. An element e; is a direct element in [attribute : ay, ¢, r, element—order :
ints Cnepl.n] 1f there exists n; such that e; is a direct element in [attribute : ay, c,f, attribute—
order : ng, element—order : int, Cnepln]-

An element ¢; is a direct element in [attribute : ay, sy, attribute—order : n;] if there ex-
ist i,; and cpey such that e; is a direct element in [attribute : ay, Sy, attribute—order :

ng, element—order : i, Coep].  An element e is a direct element in [attribute : ay,cyy,
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attribute—order : ng] if there exist i,: and ¢, such that e is a direct element in [attribute :
ity Cnf, attribute—order : ng, element—order : ing, Coepinll-

An element ¢; is a direct element in [attribute : ay, Sy, element—order : i,] if there exist ny
and ¢,y such that e; is a direct element in [attribute : ay, sy, attribute—order : ny, element—
order : int, Coept]. An element e; is a direct element in [attribute : ay, cnf, element—order : i, ] if
there exist n; and ¢, such that e; is a direct element in [attribute : ay, ¢, attribute—order :
nt, element—order : i, Cpepin]-

An element ¢, is a direct element in [attribute : ay, Sy, Cnep] if there exist ny and 4, such that
e, is a direct element in [attribute : ay, sy, attribute—order : ng, element—order : ing, Cpep]. An
element e, is a direct element in [attribute : aw, Cnf, Cnepin] if there exist n, and 4, such that e
is a direct element in [attribute : ay, ¢, s, attribute—order : n,, element—order : iy, Cpepin]-

An element ¢ is a direct element in [attribute : ay, sy if there exist ny, iy, and ¢,y such that
e, is a direct element in [attribute : ay, sy, attribute—order : ng, element—order : ing, Cpep]. An
element e; is a direct element in [attribute : ay, c,f] if there exist ny, iy, and ¢peppn such that

e, is a direct element in [attribute : ay, cnz, attribute—order : ng, element—order : ing, Cpepin]-

D Let cpepr = (=3 : 10, -2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,3 : 2) and
Stt = (Cpept * 3). Then the following properties hold:
— fy is a direct element in [attribute : area, s;;] that means that classification of nu-
merical characteristics of f, includes area in [su];
— area is a direct element in [attribute : inch, sy] that means that classification of units
of measurement of numerical characteristics of geometric figures includes inches in
Hstt]];
—inch is a direct element in [attribute : 10, sy that means that classification of nu-
meral systems for representing values of numerical characteristics of geometric figures

includes decimal system in [sy].
9.7. The direct content of attributes

A set s, is the direct content in [attribute : ay, Sy, attribute—order : n,,element—order :
ints Cnept]] 1f s¢ is the set of all direct elements in [attribute : auy, sy, attribute—order : ny,
element—order : ip,Cpep]. A set s is the direct content in [attribute : auy,cuy,
attribute—order : ny, element—order : int, Cpepin] if s¢ is the set of all direct elements in

lattribute : aw, c,f, attribute—order : ng, element—order : int, Cpepin]-
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A set s, is the direct content in [attribute : ay, sy, attribute—order : ng, element—order : i,]
if 5, = Ucncpl[[sﬁ]] silattribute : ay, Sy, attribute—order : ny, element—order : i, Cpept]]. A set
s; is the direct content in [attribute : ay,c,y, attribute—order : ny, element—order : i, if
Sp = Ucmpl‘n[[cnf]] silattribute = ay, cnp, attribute—order : ny, element—order : ing, Chepin]-

A set s; is the direct content in [attribute : aw, st, attribute—order : n.] if s; = J_, ; s
attribute : ay, Sy, attribute—order : ny, element—order : iy]. A set s; is the direct content
in [attribute : ay, coyp, attribute—order @ ny] if s, = \J_, ; siattribute : ay, cny, attribute—
order : ng, element—order : i,].

A set s; is the direct content in [attribute : ay, si] if s, = U,,, si[attribute : ay, sy, attribute—
order : ny]. A set s; is the direct content in [attribute : au,cns] if s¢ = U,, silattribute :

ity Cnf, attribute—order : ny].

@D Let cha1 = (=3 : 10,2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 10,—2 : em,—1 : area,0 : e 42,1 : triangle,2 : Euclidean,3 : 2),
Cnets = (=3 1 10,0 : e 41,1 : triangle,2 : Euclidean,3 : 2), and [support s;| =

{Cnei1, Cner.2, Cners - Then the following properties hold:

—{e1g1, €142} s the direct content in [attribute : area, su];
—{area} is the direct content in [attribute : inch, syl;
—{area} is the direct content in [attribute : ecm, sy];

— {inch,cm} is the direct content in [attribute : 10, sy];

—{e1g1} is the direct content in [attribute : 10, sy].
9.8. The content of attributes in the context of mediators

A set s, is the content in [attribute : ay, Sy, attribute—order : ng, element—order : iy, Cpepl,
mediator—degree : ng.1] if s is the set of all elements in [attribute : ay, sy, attribute—order :
nt, element—order : int, Cpepr, mediator—degree : ng1]. A set s; is the content in [attribute :
ity Cnf, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ngq] if s; is the
set of all elements in [attribute : au,c,f, attribute—order : ny, element—order : ing, Cpepins
mediator—degree : ng1].

A set s; is the content in [attribute : ay, Sy, attribute—order : ny,element—order : iy,
mediator—degree : ng 1] if s; = Ucncpl[[stt]] si[attribute : ay, sy, attribute—order : ng, element—
order : int, Cpepl, mediator—degree : ng1]. A set sy is the content in [attribute : auy,cyy,

attribute—order : ny, element—order : i,, mediator—degree : ng.] if s, = [, inlens] St
nepl.n [tn
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lattribute : aw, c,f, attribute—order : ng, element—order : int, Cpepin, mediator—degree : ng1].

A set s; is the content in [attribute : ay, sy, attribute—order : ng, mediator—degree : N1
if s = Ufm <ing sifattribute : ay, sy, attribute—order : ny, element—order : i, mediator—
degree : ngi1]. A set s; is the content in [attribute : ay, ¢, attribute—order : ng, mediator—
degree : naa] if s; = J_,,o;  silattribute : ay, c,p, attribute—order : ny, element—order :
int, mediator—degree : ng 1]

A set s; is the content in [attribute : ay, Sy, mediator—degree : ng.] if s, = Unt se]
attribute : ay, Sy, attribute—order : iy, mediator—degree : ng1]]. A set s; is the content in
[attribute : ay, e, mediator—degree : nga] if s, = U, sdlattribute : ay, ez, attribute—order :

int, mediator—degree : ng 1]

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 1 10,—=2 : inch,—1 : perimeter,0 : €, 42,1 : triangle,2 : Euclidean,3 :
2), Chas = (=3 : 10,—-2 : inch,0 : e 43,1 : rectangle,2 : Euclidean,3 : 2), and
[support su] = {Cner1s Cnei2s Cnas}- Then the following properties hold:

—{e1g1, €142} is the content in [attribute : 10, s, mediator—degree : 2];
—{e14.3} is the content in [attribute : 10, sy, mediator—degree : 1
—{triangle} is the content in [attribute : 10, sy, mediator—degree : 3];

— {rectangle} is the content in [attribute : 10, s;;, mediator—degree : 2].
10. Classification and interpretation of attributes

Attributes are classified according to their orders.
10.1. Attributes of the order 1

An attribute ay in sy, 1] models a usual attribute in [ss,;]. Elements in [attribute :

ity S, attribute—order : 1] are individuals and concepts in [sy].

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e, 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 : 10, =2 : inch,—1 : area,0 : €, 42,1 : square,2 : Riemannian,3 : 3), and
[support sy] = {cner1; Cner2}- Then the following properties hold:

— the direct attribute area classifies geometric figures having area in [sy];
—the individuals €; 41 and e; 42 are elements of the order 0 of the direct attribute area
in [sy] that means that classification of numerical characteristics of e, 41 and €4

includes area in [sy];
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—the concepts triangle and square are elements of the order 1 of the direct attribute
area in [sy]] that means that classification of numerical characteristics of triangles
and squares includes area in [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
direct attribute area in [sy] that means that classification of numerical characteristics
of geometric figures in Euclidean and Riemannian spaces includes area in [sy];

— the concept space spaces 2 and 3 are elements of the order 3 of the direct attribute
area in [sy] that means that classification of numerical characteristics of geometric

figures in two-dimensional and three-dimensional spaces includes area in [sy].
10.2. Attributes of the order 2

An attribute ay in [sy, 2] models an attribute space in [s;,;]. Elements in [attribute :

gty S, attribute—order : 2] are direct attributes, individuals and concepts in [sy].

@D Let chu1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :10,—-2 : inch, —1 : perimeter,0 : e, 42,1 : square,2 : Riemannian,3 : 3),
and [support su| = {¢ne1, Cna2}. Then the following properties hold:

— the attribute space inch classifies numerical characteristics of geometric figures mea-
sured in inches in [sy];

—the direct attributes area and perimeter are elements of the order —1 of the at-
tribute space inch in [sy] that means that classification of numerical characteristics
of geometric figures measured in inches includes area and perimeter in [sy];

— the individuals €; 4 ; and ¢; 42 are elements of the order 0 of the attribute space inch in
[s#] that means that classifications of geometric figures with numerical characteristics
measured in inches includes €; 4,1 and ;49 in [sy];

—the concepts triangle and square are elements of the order 1 of the attribute space
inch in [s4] that means that classifications of geometric figures with numerical char-
acteristics measured in inches includes triangles and squares [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
attribute space inch in [[s;] that means that classifications of spaces containing ge-
ometric figures with numerical characteristics measured in inches includes Euclidean
and Riemannian spaces in [sy];

— the concept space spaces 2 and 3 are elements of the order 3 of the attribute space inch



118 Anureev I.S. Formalisms for conceptual design of closed information systems

in [s4] that means that classifications of dimensions of spaces containing geometric
figures with numerical characteristics measured in inches includes dimensions 2 and

3 in [[Stt]]'
10.3. Attributes of the order 3

An attribute ay in [sy,3] models a space of attribute spaces in [ss,;]. Elements in
[attribute : ay, sy, attribute—order : 3] are attribute spaces, direct attributes, individuals

and concepts in [sy].

P Let cpa1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=3 :10, =2 : em, —1 : perimeter,0 : €42, 1 : square,2 : Riemannian, 3 : 3), and
[support sy] = {cne11; Cner2}- Then the following properties hold:

—the attribute space space 10 classifies numerical characteristics of geometric figures
with values represented in decimal system;

— the attribute spaces inch and cm are elements of the order —2 of the attribute space
space 10 in [s;] that means that classifications of units of measurement of numerical
characteristics of geometric figures with values represented in decimal system includes
inches and centimeters in [sy];

—the direct attributes area and perimeter are elements of the order —11 of the at-
tribute space space 10 in [sy] that means that classifications of numerical charac-
teristics of geometric figures with values represented in decimal system includes area
and perimeter in [sy];

—the individuals ¢;,; and ;42 are elements of the order 0 of the attribute space
space 10 in [s4] that means that classifications of geometric figures with numerical
characteristics with values represented in decimal system includes €; 41 and €; 42 in
[ss:];

—the concepts triangle and square are elements of the order 1 of the attribute space
space 10 in [sy] that means that classifications of geometric figures with numeri-
cal characteristics with values represented in decimal system includes triangles and
squares in [sy];

—the concept spaces Fuclidean and Riemannian are elements of the order 2 of the
attribute space space 10 in [s;] that means that classifications of spaces containing

geometric figures with numerical characteristics with values represented in decimal
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system includes Euclidean space and Riemannian space in [sy]);

— the concept space spaces 10 and 2 are elements of the order 3 of the attribute space
space 10 in [s4] that means that classifications of dimensions of spaces containing
geometric figures with numerical characteristics with values represented in decimal

system includes dimensions 10 and 2 in [sy].
10.4. Attributes of higher orders

An attribute ay in sy, 7]}, where n, > 3, is classified and interpreted in the similar way (by

the introduction of spaces of attribute space spaces and so on.).

11. Classification of conceptuals

11.1. General principles and definitions

We use the two-level scheme of classification of conceptuals. The upper (first) level is defined
by the maximal order of attributes of a conceptual. This level is described by the notion of
concretization order of a conceptual. The lower (second) level is defined by the set of all element

orders of a conceptual. This level is described by the notion of integral order of a conceptual.

11.1.1. Concretization orders of conceptuals

The number 0 is an order in [¢,y] if the minimal order in [¢,cp, element :] is greater than

or equal to 0. A number n; is an order in [¢,ep] if —n¢ is @ minimal order in [¢pep, element :].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnetz = (=2 1 inch,—1 : area,0 : e 49,1 : triangle,2 : Euclidean,3 : 2), cyus = (=1 :
area,0 : e 43,1 : triangle,2 : Euclidean,3 : 2), chua = (0 1 €1 44,1 @ triangle,2 :
Euclidean,3 : 2), cpas = (1 : triangle,2 : Euclidean,3 : 2), cuas = (2 : Euclidean, 3 :
2), and ¢,q7 = (3 : 2). Then the conceptuals ¢pe1, Cnero, Cnes have the orders 3, 2, 1

and the conceptuals ¢,c.4, Cherss Cnel6, Cner7 have the order 0.

Conceptuals of the order n; concretizes conceptuals of the orders which are less than n,.
They define the special kinds of such conceptuals and are used to classify them. Concretization
is performed by attributes of the order n, and their values. Therefore, the order of a conceptual

is also called the concretization order of the conceptual.

11.1.2. Integral orders of conceptuals
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11.1.2.1. Integral orders

A set s; is an integral order in [cyepu] if s¢ is a set of all orders in [¢pep, element :].

@D Let cha1 = (=3 : 10, -2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2),
Cnet1 = (=3 :10,—=1 : area,1 : triangle,3 : 2), c¢pa1 = (=2 : inch,—1 : area,2 :
Euclidean,3 : 2). Then o,;[cha1] = {—3,—2,—1,0,1,2,3}, o.:[cnaz] = {-3,—1,1,3},
and o, ;[chas] = {—2,—-1,2,3}.

11.1.2.2. Refined integral orders
A set s, is a refined integral order in [cpepn] if s is a result of replacement of zero or more
orders i, in [[cnepr, element ]| in the set o, ;[crep] by 0bjects ins : [Cnept int]. A refined integral
order in [[¢pep] refines an integral order in [c,qp], providing information on some elements of
Cnept With their orders. Let ¢ep @ 0,5, denote a conceptual ¢, which has the refined integral
order o, ; ,.
@D Let cpepr = (=3 : 10, =2 : inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2).
Then {-3,-2,—-1,0,1,2,3}, {-3,—2 : inch,—1,0,1 : triangle,2,3} and {—3 : 10,2 :
inch,—1 : area,0 : e 41,1 : triangle,2 : Euclidean,3 : 2} are refined integral orders in

[enen]-

11.1.2.3. Properties of integral orders

Proposition 8. A conceptual ¢y, has the single integral order.

Proof. This follows from the definition of the integral order of a conceptual. O

Proposition 9. A conceptual ¢, has a finite set of refined integral orders.

Proof. This follows from the definition of the refined integral order and the finite number of
orders of conceptuals in the context of elements. O

Proposition 10. The integral order in [¢,ep] is a refined integral order in [c,ep]-

Proof. This follows from the definition of the refined integral order of a conceptual. O

11.1.2.4. Notes

Conceptuals of the same concretization order are classified according to their integral orders.
Each integral order defines a separate kind of conceptuals.

Conceptuals allow to model ontological elements in detail. Each kind of conceptuals models

a separate kind of ontological elements.
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11.2. Modelling of ontological elements by conceptuals of the order 0

In this section conceptuals of the order 0 is classified according to their integral orders and
the ontological elements modelled by conceptuals of this classification is described.

A conceptual ¢,q : {0} models the individual [¢,ep 0].

@ The conceptual (0 : f,) models the geometric figure f,.

A conceptual e 1 {0, 1} models the individual [¢,ey 0] from the concept [¢pepn 1]

@ The conceptual (0: f,,1 : triangle) models the triangle f,.

A conceptual ¢,y : {1} models the concept [cpep 1].

P A conceptual (1 : triangle) models triangles.

A conceptual et {1,2} models the concept [cpep 1] from the concept space [Chep 2].

@ The conceptual (1 : triangle,2 : Euclidean) models triangles in Euclidean space.

A conceptual ey : {2} models the concept space [cpep 2]

@ The conceptual (2 : Fuclidean) models Euclidean space.

A conceptual e 1 {0,2} models the individual [¢,e 0] from the concept space [cpep 2].

@ The conceptual (0 : f,,2 : Fuclidean) models the geometric figure f; in Euclidean space.

A conceptual ¢, : {0, 1,2} models the individual [¢,e 0] from the concept [cpep 1] from
the concept space [¢hepr 2]

@ The conceptual (0 : f,,1 : triangle,2 : Euclidean) models the triangle f, in Euclidean

space.

Classification of other conceptuals of the order 0 and description of the ontological elements
modelled by these conceptuals is performed in a similar way (by the introduction of the concept
space space and so on.). For example, a conceptual ¢,y : {0,1,2,3} models the individual
[Chept 0] from the concept [cpep 1] from the concept space [cpep 2] from the concept space space
[Crepl 3]

@ The conceptual (0 : f,, 1 : triangle,2 : Euclidean,3 : 2) models the triangle f, in two-

dimensional Euclidean space.

11.3. Modelling of ontological elements by conceptuals of the order 1

In this section conceptuals of the order 1 is classified according to their integral orders and
the ontological elements modelled by conceptuals of this classification is described.

A conceptual ¢,y @ {—1} models the attribute [cpen — 1].
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P The conceptual (—1 : area) models area of geometric figures.

A conceptual ¢,y 0 {—1,0} models the attribute [c, — 1] of the individual [c;,ep 0].

@ The conceptual (—1 : area,0 : f;) models area of the geometric figure f,.

A conceptual ¢, 0 {—1,0, 1} models the attribute [¢, — 1] of the individual [¢,q 0] from
the concept [Cpep 1]

@ The conceptual (—1 : area,0 : f,,1: triangle) models area of the triangle f,.

A conceptual ¢, 0 {—1, 1} models the attribute [, — 1] of individuals from the concept
[Crepl 1]

@ The conceptual (—1 : area, 1 : triangle) models area of triangles.

A conceptual ¢ 0 {—1,0,1,2} models the attribute [c o — 1] of the individual [¢,ep 0]
from the concept [c,ep 1] from the concept space [cpep 2]

@ The conceptual (—1 : area,0 : f,,1: triangle,2 : Euclidean) models area of the triangle
fy in Euclidean space.
A conceptual ¢, : {—1, 1,2} models the attribute [¢,, — 1] of individuals from the concept
[Chepr 1] from the concept space [Cpep 2]

@ The conceptual (—1 : area,1 : triangle,2 : Fuclidean) models area of triangles in Eu-
clidean space.
A conceptual ¢, 0 {—1,0,2} models the attribute [¢, — 1] of the individual [¢,q 0] from
the concept space [Cpep 2]
@ The conceptual (—1 : area,0 : f;,2 : Fuclidean) models area of the geometric figure f,
in Euclidean space.

A conceptual ¢, @ {—1,2} models the attribute [c,eu — 1] of individuals from concepts

from the concept space [cpep 2]

@ The conceptual (—1 : area,?2 : Euclidean) models area of geometric figures in Euclidean

space.

Correlation between other kinds of conceptuals of the order 1 and the corresponding kinds

of ontological elements is performed in a similar way.

11.4. Modelling of ontological elements by conceptuals of the order 2

In this section conceptuals of the order 2 is classified according to their integral orders and

the ontological elements modelled by conceptuals of this classification is described.
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A conceptual ¢pep : {—2, —1} models the attribute [¢pe, —1] in the attribute space [¢hen —2].

@ The conceptual (-2 : inch, —1 : area) models area measured in inches.

A conceptual ¢, ¢ {—2, —1,0} models the attribute [¢,e — 1] of the individual [¢,ep 0] in
the attribute space [chep — 2].

@ The conceptual (=2 : inch,—1 : area,0 : f,) models area of the geometric figure f,

measured in inches.

A conceptual ¢, 0 {—2,—1,0, 1} models the attribute [¢,e — 1] of the individual [¢pep 0]

from the concept [c,e 1] in the attribute space [chep — 2]

@ The conceptual (-2 : inch, —1 : area,0 : f,,1 : triangle) models area of the triangle f,

measured in inches.
A conceptual ey @ {—2,—1,1} models the attribute [¢,n — 1] of individuals from the
concept [cpep 1] in the attribute space [cpep — 2J.
@ The conceptual (=2 : inch, —1 : area, 1 : triangle) models area of triangles measured in
inches.
A conceptual ¢, {—2,—1,0, 1,2} models the attribute [¢,,e — 1] of the individual [¢,ep 0]
from the concept [c,ep 1] from the concept space [cnen 2] in the attribute space [cpepn — 2J.
@ The conceptual (-2 : inch, —1 : area,0 : f,,1 : triangle,2 : Euclidean) models area of
the triangle f, in Euclidean space measured in inches.
A conceptual ¢pep : {—2,—1,1,2} models the attribute [¢, — 1] of individuals from the
concept [Cpep 1] from the concept space [cpen 2] in the attribute space [Cpep — 2].
@ The conceptual (—2 : inch, —1 : area, 1 : triangle,2 : Fuclidean) models area of triangles
in Euclidean space measured in inches.
A conceptual ¢, 0 {—2,—1,0,2} models the attribute [¢,e — 1] of the individual [¢ep O]
from the concept space [cpepn 2] in the attribute space [Cpep — 2]

@ The conceptual (-2 : inch, —1 : area,0 : f,,2 : Euclidean) models area of the geometric

figure f, in Euclidean space measured in inches.

A conceptual ¢pep : {—2, —1,2} models the attribute [cpen — 1] of individuals from concepts

from the concept space [cpen 2] in the attribute space [cpepn — 2]

P The conceptual (=2 : inch,—1 : area,2 : Fuclidean) models area of geometric figures in

Euclidean space measured in inches.
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A conceptual ¢, 0 {—2,0} models the individual [¢e 0] in the attribute space [cpep — 2].

@ The conceptual (—2 : inch,0 : f,) models the geometric figure f, with numerical charac-

teristics measured in inches.

A conceptual ¢pep : {—2,0, 1} models the individual [¢pe 0] from the concept [¢pep 1] in the

attribute space [cpep — 2J.

@ The conceptual (—2 : inch,0 : f,,1 : triangle) models the triangle f, with numerical

characteristics measured in inches.
A conceptual e 0 {—2, 1} models the concept [, 1] in the attribute space [cpep — 2].

@ The conceptual (—2 : inch, 1 : triangle) models triangles with numerical characteristics

measured in inches.

A conceptual ¢,e 0 {—2,1,2} models the concept [cpen 1] from the concept space [¢pep 2]

in the attribute space [chep — 2.

@ The conceptual (=2 : inch,1 : triangle,2 : Fuclidean) models triangles in Euclidean

space with numerical characteristics measured in inches.
A conceptual ¢ep : {—2, 2} models the concept space [,y 2] in the attribute space [¢,ep —2].

@ The conceptual (=2 : inch,2 : Fuclidean) models geometric figures in Euclidean space

with numerical characteristics measured in inches.

A conceptual ¢, 0 {—2,0,2} models the individual [¢,y 0] from the concept space [chepr 2]

in the attribute space [chep — 2.

@ The conceptual (=2 : inch,0 : f;,2 : Euclidean) models the geometric figure f, in

Euclidean space with numerical characteristics measured in inches.

A conceptual ¢ @ {—2,0,1,2} models the individual [¢uen 0] from the concept [chep 1]

from the concept space [cpen 2] in the attribute space [Cpep — 2]

@ The conceptual (=2 : inch,0 : f,,1 : triangle,2 : Euclidean) models the triangle f, in

Euclidean space with numerical characteristics measured in inches.

Correlation between other kinds of conceptuals of the order 2 and the corresponding kinds

of ontological elements is performed in a similar way.

11.5. Modelling of ontological elements by conceptuals of the higher

orders
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Classification of conceptuals of the order 3 or higher and description of the ontological
elements modelled by conceptuals of this classification is performed in a similar way (by the
introduction of the attribute space space and so on.).

@ The conceptual (-3 : 10,—2 : inch,—1 : area,0 : f,,1 : triangle,2 : Euclidean,

3 : 2) models area of the triangle f, in two-dimensional Euclidean space measured in

inches in decimal system.

12. Modelling of relations, types, domains, inheritance

12.1. Relations and their instances

Finite binary relations are modelled by direct concepts and their instances are modelled by
the elements of the order 0 of these concepts, represented by pairs of elements.

Finite relations of the arity n; are modelled by direct concepts and their instances are
modelled by the elements of the order 0 of these concepts, represented by sequence elements of
the length n,.

Finite relations of the variable arity are modelled by direct concepts and their instances are
modelled by the elements of the order 0 of these concepts, represented by sequence elements of

the variable length.

12.2. Types and domains

Finite types are modelled by direct concepts and their values are modelled by the elements
of the order 0 of these concepts. Domains as the special kind of finite types are also modelled by
direct concepts and their values are modelled by the elements of the order 0 of these concepts.

Types of attributes of the order n; are modelled by the special attribute type of the order
n; + 1. Values of this attribute are types.

P Let cpep = (=2 : type, —1 : area,0 : f,), and sy = (Cpep : real). Then the area of the

geometric figure f, is a real number in [s;].
P Let cpepr = (=2 : type, —1 : area,0 : %), and sy = (Cpep : Teal). Then the area of any

geometric figure is a real number in [s,]. The semantics of * is defined in section ??

12.3. Inheritance

12.3.1. Inheritance on elements
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The usual inheritance relation on concepts is generalized to the inheritance relation on
elements of the same order in [s;]. It is modelled by the special direct concept inheritance
and their instances are modelled by the elements of the order 0 of the concept inheritance,
represented by the triples of elements. Elements of the triple specify the inheriting element,
the inherited element and their order. An element e; inherits from e;1 in [sy, in] if [sy (O :
(€1, €11, 0nt), 1 = inheritance)] # und.

Inheritance on elements redefines interpretation value of conceptuals as follows:

o if sy Cpep] # und, then [value Cpepr Stt] = [Stt Cnepl);

o if [syt Cpepi] = und, i, is @ maximal order in [¢,qp, element :], s; is a set of e;[[s] such that
[Crepl Tne] inherits from e; in [Su, ine], s¢ # 0, and [value [Crepl ine © €1] Sit] = [value [Crepl ine :
er1] su) for all e, ;1 € s, then [value cpep Si) = [value [Cpept int © €1] s, Where e; € s;

e otherwise, [value cpep i) = und.

12.3.2. Inheritance on direct concepts

The inheritance on direct concepts is the special case of the inheritance on elements.

A concept ¢pepq inherits from a concept ¢p prai i [si] if cuepa inherits from ¢, prq1 in
[[Stta 1]]

12.3.3. Inheritance on element sequences

The inheritance relation on elements is generalized to the inheritance relation on element
sequences. This relation is modelled by the special direct concept inheritance :: sq and their
instances are modelled by the elements of the order 0 of this concept, represented by the
triples of sequence elements of the same length. The elements of the triple specify inheriting
elements, inherited elements and their orders. An element e; () inherits from e; ()1 in [Se, ine.(4)]
if ne) = (Intds o ntme )y Intd < ooo < lnemy,, [len ey = [len epya] = ng, and [sy (0 :
(€105 €L(1).15 Int.(x))s L 1 inheritance :: 5q)] # und.

Inheritance on ordered elements redefines interpretation value of conceptuals as follows:

o if sy Cpep] # und, then [value Cpepr Stt] = [Stt Cnepl);
oif
— [s4 Cncpl] = und,
—lpt1 < ... <lptp, are orders in [cpep, element ],
—for all 4y if 44 > dpe1 and iy is an order in [¢pep, element :], then i, coincides with

one of the numbers i,: 1, ..., tnt.n,,
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— ¢ 18 a set of e[s] such that ([cuept inta], - - s [Crept Tntn,]) inherits from e; in [su, (ine1,
]

— 5 # @7

— [value [cuept tnta 2 €0 - 1], inen, = €0 - 0] Su) = [value [coept Tnta €11 - 1], ...,

intm, © €11 - 1] su) for each e, €1 € s,

then [value cpep Sit| = [value [cuepr inta €1 - 1), .o intn, @ (€1 - Tu)] Su), Where e, € sy

e otherwise, [value Cpep Si] = und.
13. Generic conceptuals

A generic conceptual defines a set of conceptuals satisfying a certain template and sets the
default value for these conceptuals. Conceptuals from this set are called instances of the generic

conceptual. The template of the generic conceptual is defined by its form.
13.1. The main definitions
13.1.1. Generic conceptuals

Let * € Ayy,. A conceptual ¢,epfsu] is a generic conceptual in [sy,] if there exists opq[Cpepi]

such that [cuep 0rd] € {*, (%, 1), (%, tp, Prm)s (52 %, Prm) }- The element p; s of the form [¢yep 0rd]

from this definition is called a substitution place in [cyepi, Sit, 0rq]. The number o,4 is called
an order in [p;s, Cpept, Sue]. The elements ¢, and p,,, are called a type and parameter in

[[pl.sa Cnepl s Stt, Ord]] .

13.1.2. Kinds of generic conceptuals

A conceptual ¢, 4 is partially typed in [s;] if there exist p; s, t, and o, such that p;, is a
substitution place in [cpepig, Su, 0ra] and ¢, is a type in [prs, Cuepl.gs Stt, Ordl-

A conceptual ¢4 is typed in [sy] if for all p,s and o,4 if p; s is a substitution place in
[nepl.gs St 0ra], then there exists ¢, such that ¢, is a type in [pis, Coepigs Sit, Ord]-

A conceptual ¢4 i parametric in [[sy] if there exist p; s, pym and o,4 such that p;, is a

substitution place in [cpepig, Sits 0ra]] and pry, is @ parameter in [pys, Coepi.gs Sit, Ord]-

13.1.3. Instances of generic conceptuals

A conceptual ¢,y is an instance in [cyeprg, Su]l, if the following properties hold:

o if [Chepig Int] 1S NOt a substitution place in [Chepig, Stts tnt], then [Cnept int] = [Cneplg intl;
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o if [Chepiy int] 1S a substitution place in [Ceprgs Stt, int], then [Cpepr int] i an element in
[[Smint]];

o if [Creprg int] € {(*,8p), (*,tp, Prm)}, then [cpep ine] is an element in [concept : t,, sy,
concept—order : 1, element—order : 0];

o if p.,, is a parameter in [prs.1, Crept.g, Stts Or.e.1] and [Prs2, Crepi.gs Stts Ore2]l, then [Crepr 0pc.1]

= [Cncpl 07‘.6.2] .

13.1.4. States with generic conceptuals

A state sy is a state with generic conceptuals, if the following properties hold:
e (the consistency property) if cpe g1 F Cneig2, then there is no ¢,y such that ¢,y is an
instance of ¢, 41 In [S4] and cpep s an instance of ¢pe g0 in [su];
e interpretation value of conceptuals is redefined as follows:
—if [s4t Cpept] # und, then [value cuep Sit) = [Stt Crepll;
—if [Sy Cpep] = und and ¢,y is an instance in [Cpeprg, Suf, then [value cpep Su] =
[Stt Cncpl.g];

— otherwise, [value cuep Su) = und.

13.2. Examples of generic conceptuals

A conceptual cpepg 0 {—1,0 : %, 1} models the property that the value of the attribute
[Cheptg — 1] of individuals from the concept [chepy 1] equals [si Creprg] I [S] if it is not defined
explicitly.

@ The conceptual cpepy = (—1 : area,0 : %, 1 : triangle) models the property that area of

triangles equals [Sy Cheprg] In [[s1] if it is not defined explicitly.

A conceptual ¢,y 0 {—1,0 : *} models the property that the value of the attribute [c,eprg —
1] of individuals equals [s Cpepig] in [se] if it is not defined explicitly.

€ The conceptual ¢,epy = (—1 : area,0 : %) models the property that area of geometric

figures equals [S Cpepig) I [si] if it is not defined explicitly.

A conceptual ¢peprg @ {0 : %, 1} models the property that the value of individuals from the
concept [Cpeprg 1] equals [si Cpeprg] In [sy]) if it is not defined explicitly.

@ The conceptual cyeprg = (0 : %, 1 : triangle) models the property that the value of triangles

equals [si Cpeplrg] In [si] if it is not defined explicitly. What is the value of a triangle

depends on interpretation.
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13.3. Modelling of ontological elements and

their properties based on generic conceptuals

Generic conceptuals together with attributes allow to model ontological elements and their
properties in more detail.

A conceptual cpeprg @ {—2 @ type, —1,0 : *,1} models the property that the type of the
attribute [cpepry — 1] of individuals from the concept [cpepiy 1] equals sy Cpepig) in [sy] if it is

not defined for individuals explicitly.

@ The conceptual cpepg = (—2 : type, —1 : area,0 : *,1 : triangle) models the property
that the type of the attribute area of triangles equals [Sy; Cpepig] in [su] if it is not defined

for triangles explicitly.

A conceptual cpep g 0 {—2: type, —1,0 : *} models the property that the type of the attribute

[Cheprg — 1] of individuals equals [S¢ Cpeprg] In [sy]) if it is not defined for individuals explicitly.

@ The conceptual cpep g = (—2 : type, —1 : area,0 : *) models the property that the type
of the attribute area of geometric figures equals [sy; Cpepig] in [sy] if it is not defined for

geometric figures explicitly.
A conceptual ¢pepg 0 {—2 : type,0 : x} models the property that the type of individuals
equals [Si Cneprg) I [s] if it is not defined for individuals explicitly.
@ The conceptual cpep g = (—2 : type, 0 : ) models the property that the type of geometric

figures equals [Sy Cpeprg) I [S4¢] if it is not defined for geometric figures explicitly.

A conceptual ¢,ep 0 {—2 : type, 0 : %, 1} models the property that the type of individuals
from the concept [Cpepig 1] equals [sy Cpeprg] in [sy] if it is not defined for such individuals
explicitly.

@ The conceptual cpepg = (—2 : type, 0 : %, 1 : triangle) models the property that the type

of triangles equals [Sy Cpeprg) I [S1¢] if it is not defined for triangles explicitly.

14. The CCSL language

The CCSL language (Conceptual Configuration System Language) is a basic language of
CCSs. Interpretable elements of CCSL are called basic elements of CCSs.
L Tp,0, CON AN T Cpp).

Let Sp - (LE 2o, Y Yo, X120, U U, VIV, W:IWy, T1:T1.0y +-+y Ty

14.1. Syntax of CCSL
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An object o, is an atom in CCSL if

e 0, is a sequence of Unicode symbols except for the whitespace symbols and the symbols
7’7 ,7 (7 )7 Py and 5 or
® 0, is a special atom, or

" called a string, where o, is a sequence of Unicode symbols in which

e 0, has the form 7o, ¢’
each occurrence of the symbol ” is preceded by the symbol " and each occurrence of the
symbol ’ is doubled.

The set Ay, of special atoms includes the object ::= and can be extended.

An object o is an element in CCSL if o, € Ay, 0p = €1 : €11, 0p = (€1.4), OT 0p = €] 2 €)1.

The whitespace symbols and the semicolon in CCSL are element delimiters along with
comma. For example, (1, €2), (e11; €12) and (e €,2) represent the same element.

An element ¢;, is a conceptual in CCSL if all its attributes are integers.

An element ¢;, is a conceptual state in CCSL if all its attributes are conceptuals.

An element ¢, is a conceptual configuration in CCSL if [image €;,] C Sy.

The element (pattern p; var (v,.) seq (v,54)) in CCSL represents the pattern specification
(Pes (Vrs),s (Vrsx))-

The element (definition p; var (v,.) seq (v.s.4) then by) :: name :: n,, in CCSL represents

the element definition (p, (vr4), (Vr.s), bg) With the name n,.

For simplicity, we omit the names of interpretations and definitions below.
14.2. The special forms for interpretations and definitions

In this section we define the special forms for interpretations and definitions used below.

The form (interpretation p; var (v..) seq (vys4) then f,) :: name :: n,, denotes the inter-
pretation (p, (Vy4), (Ur.sx), fn) With the name n,,.

The objects var (v,.) and seq (v,s.) in the form (interpretation ...) can be omitted. The
omitted objects correspond to var () and seq (), respectively.

Let {4}, {5}, {Ure1} and {v,. 2} are pairwise disjoint, and {v,.3} C {v,«} U{vs1} U
{vy.2}. The form (definition p, var (v,.) seq (Vrsx) abn (V1) und (vy.2) val (v,.3) where
Cna then by) called a definition form is defined as follows:

o (definition py var (vy..) seq (Ups.) und (Vy.1) abn (V4 2) val (vy.3) where c,q then by) is
a shortcut for (definition p, var (v,.) seq (Vrsx) abn (V1) und (Vy.2) val (v,.3) then

(if cng then by else und));
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o (definition p, var (v,.) seq (Vy.sx) und (Vy41) abn (vy.2) val (v,.3, v.) then by) is a short-
cut for (de finition p; var (v,.) seq (Vy.s..) und (Vy.1) abn (Vy.2) val (v, 3) then (let w be
v, in [subst (v, 2% :w) by])), where w is a new element that does not occur in this defi-
nition;

o (definition p; var (vy.) seq (Ursi) und (vy.1) abn (v..2) val () then by) is a shortcut
for (definition p; var (v,..) seq (Vysx) und (Vy.1) abn (Vy.2) then by);

e (definition p, var (v,.) seq (Vrsx) und (V.1, v.) abn (V..2) then by) is a shortcut for
(definition p, var (v..) seq (Vrsx) und (vp.1) abn (v,.2) then (if (v, is unde fined) then
und else by));

e (definition p; var (v..) seq (Uys.) und () abn (v,.2) then by) is a shortcut for (de finition
pr var (vp.) seq (Urss) abn (v,.2) then by);

o (definition p; var (v,.) seq (Vy.s.4) abn (Vy.2, v.) then by) is a shortcut for (definition p;
var (Vy..) seq (Vy.sx) abn (vp.2) then (if (v, is abnormal) then v, else by));

e (definition p; var (v,.) seq (v,s.4) abn () then by) is a shortcut for (de finition p, var (v,.)
seq (Vy.s.x) then by).

The element ¢,4 specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v, ;. Abnormal values are propagated through
the variables of v, .. The special element v, :: * references to the value of element associated
with the pattern variable v,. A pattern variable is evaluated if the element associated with it is
evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern variable is
quoted if the element associated with it is not evaluated. Let F,,, 4 be a set of definition forms.

The objects var (v..), seq (Vrs«), und (vVp.1), abn (vVp.2), val (v,.3) and where ¢,q in the
form (de finition ...) can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

15. Semantics of interpretable elements in CCSL

15.1. Abnormal elements operations

The element und is defined as follows:
(de finition und then und : q).
The element e, is defined as follows:

(de finition x var (x) where (z is exception) then x :: q) :: name :: ("Q”, exception).
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The definition satisfies the property: n, <[o.,....] ("@",exception) for each n,, such that n,,
is a name of an atomic element interpretation or element definition with the pattern distinct
from v,, where v, is a variable of this pattern.

The element e; :: q is defined as follows:
(interpretation x :: q var (x) then f,),

where [f,, sp] = 0.
15.2. Statements

The element (if x then y else z) is defined as follows:
(definition (if x then y else z) var (z, y, z) val (x)
then (if x:* then y else z):: atm);
(interpretation (if x then y else z)::atm var (x, y, z) then f,),
where [f, sp] = [if [xo # und] then [value yo [sp conf ::in]] else [value zq [sp conf ::in]].
The element (if = then y elseif z then u ... else v) is defined as follows:
(de finition (if x then y elseif z) var (x, y, z) seq (2)
then (if x then y else (if z))).
The element (let x be y in z) is defined as follows:
(interpretation (let x be y in z) var (x, y, z) then f,),
where [f,, sp] = [value [subst (zg : [value yo [sp conf ::in]]) zo] [sp conf ::in]].
The element e; of the form (let :: seq x be y in z), where x € E«), y € Ej (), and
[len x] = [len y], is defined by the rule
(rule (let ::seq x, y be z, w in v) var (z, z, v) seq (y, u)
then (let x be z in (let :: seq y be u in v)));
(rule (let :: seq be in v) var (v) then v).
The elements x, y and z are called a substitution variables specification, substitution values
specification and substitution body in [e;]. The elements of x and y are called substitution

variables and substitution values in [e;].
15.3. Characteristic functions for defined concepts

An object dy. is a concept definition if dy. is an interpretation of the form (interpretation
(€11 is er2) var (vr..) seq (vrss) then f,) :: name :: n,,, or ds. is a definition of the form

(de finition (e is e2) var (v..) seq (Vrs) then by) :: name :: n,,. Concept definitions specify
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concepts and their instances. Concepts specified by them are called defined concepts. The
elements e;; and ;5 are called an instance pattern and concept pattern in [dy.]. The element
(€11 s e12) is called a characteristic function in [dy.]. Let Dy, be a set of concept definitions.

An element ¢4 is a defined concept in [dy., sp]] if ¢nep is an instance in [(e;2, var (v,.) seq
(Ursx)), My, Sp]). An element ¢, 4 is a defined concept in [dy.] if there exists s, such that ¢,ep.q
is a defined concept in [dy., sp]. An element ¢, is a defined concept in [c,s] if there exists
df.cllcns]] such that cpepq is a defined concept in [dy.]. Let Cpepa be a set of defined concepts.

An element iy, is an instance in [dy.., sp] if 9,5, is an instance in [(e;.1, var (v..) seq (vy.5.4)),
my, sp]]. An element 4,4, is an instance in [dy ] if there exists s, such that c,,.4 is an instance
in [df.c, sp].

An element 4,4, is an instance in [chep.d, Cnf, df.c] if insen is an instance in [dy.c, Cpep.a] 1is @
defined concept in [dy.], and [value (instn @S Cnepd) Cnf (Mm)] # und. An element iy, is an
instance in [cpep.d, Cny] if there exists dy. such that i, is an instance in [Cpep.d; Cog, dfc]. An
element ¢, 4 is an instance in [c,r, m¢] if there exists ¢,epq such that 4,4, is an instance in
[¢nep.d, cngl- Let Iqy, be a set of instances.

A set s; is called a content in [¢ep.a, Cnr] if st 1s a set of all 4,4, such that i, is an instance
in [Cnep.da; cayl. Let [content Cpep.q cny] denote the content in [cep.a, Cos]-

The notion of defined concepts is extended to the definitions of the form (de finition (e;; is
era) var (Vy..) seq (Vy.s.) und (Vy..1) val (vy..3) where cyq then by). Let dy have this form. An
element ¢4 is a defined concept in [dy, sp] if cpep.q is @ defined concept in [dy1, sp], where df
is a definition of the form (de finition (e;1 is e12) var (v,..) seq (vrs.) then bg1) such that dy
is reduced to dy.;.

The element (z is atom) specifying that x is an atom is defined as follows:

(interpretation (x is atom) var (x) then f,),
where [f,, sp] = [if [x0 € Ay then true else und).

The element (x s update) specifying that z is an element update is defined as follows:
(interpretation (x is update) var (x) then f,),
where [f, sp] = [if [x0 € Up.] then true else und].

The element (x is multi—attribute) specifying that z is a multi-attribute element is defined
as follows:

(interpretation (x is multi—attribute) var (x) then f,),

where [f,, sp] = [if [0 € Elma) then true else und).
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The element (x is attribute) specifying that x is an attribute element is defined as follows:
(interpretation (x is attribute) var (x) then f,),
where [f,, sp] = [if [0 € Ei4] then true else und).

The element (z is sorted) specifying that z is a sorted element is defined as follows:
(interpretation (x is sorted) var (z) then f,),
where [f, sp] = [if [x0 € Ejs] then true else und).

The element (z is undefined) specifying that = equals und is defined as follows:
(interpretation (x is undefined) var (x) then f,),
where [f, sp] = [if [x0 = und] then true else und).

The element (x is de fined) specifying that x does not equal und is defined as follows:
(interpretation (x is defined) var (x) then f,).
where [f,, sp] = [if [xo # und] then true else und).

The element (z is exception) specifying that x is an exception is defined as follows:
(interpretation (x is exception) var (x) then f,),
where [f,, sp] = [if [x0 € Ey] then true else und].

The element (z is normal) specifying that x is a normal element is defined as follows:
(interpretation (x is normal) var (z) then f,),
where [f, sp] = [if [x0 € Epp] then true else und).

The element (z is abnormal) specifying that x is an abnormal element is defined as follows:
(interpretation (x is abnormal) var (z) then f,),
where [f,, sp] = [if [0 € Eia) then true else und).

The element (z is sequence) specifying that x is a sequence element is defined as follows:
(interpretation (x is sequence) var (z) then fy,),
where [f, sp] = [if [0 € By (] then true else und).

The element (x is set) specifying that the elements of the sequence element x are pairwise
distinct is defined as follows:
(definition (x is set) var (x) where (x is sequence) then (x is set) :: atm);
(interpretation (x is set) :: atm var (x) then f,),
where [f, sp] = [if [[xo . mea] # [To . muo] for all nyy and ngo such that nyy # nga,ngy <
[len xo] and nyo < [len xo]] then true else und).

The element (x is empty) specifying that x is an empty element is defined as follows:

(de finition (x is empty) var (x) then (x:q = ())).
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The element (z is nonempty) specifying that x is not an empty element is defined as follows:
(definition (x is monempty) var (x) then (x:q != ())).

The element (z is conceptual) specifying that x is a conceptual is defined as follows:
(interpretation (x is conceptual) var (x) then f,),
where [f,, sp] = [if [t0 € Chep] then true else und.

The element (z is (conceptual in y)) specifying that x is a conceptual in the context of the
state y is defined as follows:
(definition (x is (conceptual in y)) var (x, y)

where ((z is conceptual) and (y is state)) then (x is conceptual in y) :: atm);

(interpretation (x is (conceptual in y)) :: atm var (x, y) then f,),
where [f, sp] = [if [x0 € Crepyo]] then true else und.

The element (x is state) specifying that x is a conceptual state is defined as follows:
(interpretation (x is state) var (z) then f,),
where [f,, sp] = [if [0 € Su] then true else und).

The element (z is configuration) specifying that x is a conceptual configuration is defined
as follows:
(interpretation (x is configuration) var (x) then f,),
where [f,, sp] = [if [0 € Chy] then true else und).

The element (z is nat) specifying that z is a natural number is defined as follows:
(interpretation (x is nat) var (z) then f,),
where [f, sp] = [if [xo € N,| then true else und].

The element (z is nat0) specifying that x is either a natural number, or a zero is defined as
follows:
(interpretation (x is nat0) var (z) then f,),
where [f, sp] = [if [0 € Nio| then true else und).

The element (x is int) specifying that = is an integer is defined as follows:
(interpretation (x is int) var (x) then f,),
where [f, sp] = [if [x0 € L] then true else und].

The element (x is (satis fiable in y)) specifying that x is satisfiable in the context of variables
y is defined as follows:
(definition (x is (satisfiable in y)) var (z, y) where (y is sequence)

then (x is (satisfiable in y)) :: atm);
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(interpretation (x is (satisfiable in y)) :: atm var (x, y) then f,),
where [f,, sp] = [if [xo is satisfiable in [(yo, [sp conf ::in])]] then true else und].
The element (z is (valid in y)) specifying that z is valid in the context of variables y is
defined as follows:
(definition (x is (valid in y)) var (x, y) where (y is sequence)
then (x is (valid in y)) :: atm);
(interpretation (x is (valid in y)) :: atm var (z, y) then f,),
where [f,, sp] = [if [xo is valid in [(yo, [sp conf :: in])]] then true else und].
The element (x is (sequence y)) specifying that x is a sequence element such that the value
in [(e; is y)] does not equal und for each element ¢; of x is defined as follows:
(definition ((x y) is (sequence z)) var (z, z) seq (y)
then ((z is z) and ((y) is (sequence z)));

(definition (() is (sequence x)) var (x) then true).
15.4. Elements operations

The element () is defined as follows:
(definition () then () : q).
The element (len z) specifying the length of the element x is defined as follows:
(definition (len x) var (x) val (z) then (len x :: %) :: atm);
(interpretation (len x) :: atm var (x) then f,),
where
oif g € Ay, UU, U Ejg, then [f, sp] = 1;
o if 2o = (e;.4), then [f,, sp] = [len e;.].
The element (z = y) specifying the equality of the elements x and y is defined as follows:
(definition (x = y) var (x, y) val (x, y)
then (x % = y:x*):altm);
(interpretation (x = y):atm var (z, y) then f,),
where
e if 25 and yo are equal atoms, then [f, s,] = true;
oif vy € Upe, Yo € Upe, arglzo] = arglyo], and vi[zo] = vifyo]l, then [f,, sp] = true;
o if 79 € Ejs, Yo € Eus, eifzo] = eifyo]], and s, [xo] = sr¢[yo], then [f,, sp] = true;

o if 29 € Ei (4, Yo € Ei(), and o and yo are equal sequences, then [f, s3] = true;
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e otherwise, [f, sp] = und.
The element (z ! = y) specifying the inequality of the elements z and y is defined in the
similar way:.
The element (x . y) specifying the y-th element of the sequence element z is defined as
follows:
(de finition (x . y) var (z, y) val (z, y)
where ((z :: % is sequence) and (y :: x is nat)) then (r % . y:: %) atm);
(interpretation (x . y)::atm var (z, y) then f,),
where [f, sp] = [z0 - Yo
The element (x .. y) specifying the value of the attribute element x for the attribute y is
defined as follows:
(definition (x .. y) var (x, y) val (x) where (x :: % is attribute)
then (z:* .. y):atm);
(interpretation (x .. y):: atm var (z, y) then f,),
where [f, sp] = [To Yo]-
The element (r + y) specifying the concatenation of the sequence elements x and y is
defined as follows:
(definition (x + y) var (z, y) val (z, y)
where ((z :: % is sequence) and (y :: * is sequence)) then (x % —+ y:x):atm);
(interpretation (xr + y)::atm var (x, y) then f,),
where [f,, sp] = (€14 €1.1.+) for some e, and e; ;. such that zq = () and yo = €1 4.
The element (x . + y) specifying the addition of the element x to the head of the sequence
element y is defined as follows:
(definition (x .+ y) var (z, y) val (z, y) where (y: * is sequence)
then (x % .+ y:x):atm);
(interpretation (r .+ y) ::atm var (x, y) then f,),
where [f, sp] = [if [yo = (1) for some e;,] then (g e.) else und].
The element (x .+ :: set y) specifying the addition of the element x to the head of the
sequence element y representing a set is defined as follows:
(definition (x .+ = set y) var (z, y) val (xz, y) where (y:: * is set)
then (x % .+ :set y:: %) :atm);
(interpretation (x .+ :: set y) :: atm var (z, y) then f,),
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where [f, sp] = [if [yo = (e1..) for some e, then [if [xo € er.] then (e,.) else (zg €.4)] else
und).
The element (z + . y) specifying the addition of the element y to the tail of the sequence
element z is defined as follows:
(definition (x +. y) var (z, y) val (z, y) where (x : % is sequence)
then (z:% +. y:%):atm);
(interpretation (xr +. y) :: atm var (x, y) then f,),
where [f, sp] = [if [x0 = (e1.«) for some e;.] then (e, yo) else und).
The element (x + . :: set y) specifying the addition of the element y to the tail of the
sequence element x representing a set is defined as follows:
(definition (x +.: set y) var (z, y) val (z, y) where (z ::* is set)
then (x::% 4 .:set y:: %) :atm);
(interpretation (x +.:: set y)::atm var (v, y) then f,),
where [f,, sp] = [if [xo = (e1..) for some e, ] then [if [yo € €] then (e;.) else (e, yo)] else und).
The element (x — . :: set y) specifying the deletion of the element y from the sequence

element x representing a set is defined as follows:

(definition (x —.: set y) var (z, y) val (z, y) where (x :: * is set)
then (x % —.: sel y: %) atm);
(interpretation (x —.: set y) ::atm var (x, y) then f,),

where [f, sp) = [if [0 = (€141 Yo €1+.2) for some e, 1 and e;..o] then (ej.1 €.2) else [if [xg =
(€1.+) for some e;,] then (e..) else und|].
The element (upd x ¥y : 21, ..., Yn, : 2n,) SPecifying the sequential updates of the attribute

element x at the points 1, ..., Yn, by 21, ..., 25, is defined as follows:

(de finition (upd z y) var (z) seq (y) wval (z)

where ((x :: % is attribute) and ((y) is (sequence update))) then (upd :: att x :: % y));
(definition (upd :: att x y z) var (y) seq (z) und (z)

then (let w be (updl ::att z y) in (upd: att w z)));

(definition (upd :: att ) var (z) then x);

(de finition (updl ::att © y: z) var (x, y, z) val (z)

then (updl ::att x y:z: %) atm);

(interpretation (updl ::att x y: z):: atm var (z, y, z) then f,),

where [f, sp] = [z0 Yo : 20]-
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The element (upd x y : z) specifying the update of the sequence element x at the index y
by z is defined as follows:
(de finition (upd z y z) var (x, y, z) val (x, y, 2)
where ((z :: % is sequence) and (y:: x is nat) and (y::x <= ((len z:x:q) + 1)))
then (upd ::seq = ::x y % z: %) atm);
(interpretation (upd :: seq x y: z)::atm var (x, y, z) then f,),
where [f,, sp] = [att—obj—to—seq [[seq—to—att—obj x| yo : 20]]-
The element (x in :: set y) specifying that x is an element of the sequence element y is
defined as follows:
(definition (x in :: set y) var (x, y) where (y is sequence)
then (x in :: set y) :: atm);
(interpretation (x in :: set y) :: atm var (x, y) then f,),
where [f,, sp] = [z0 € o).
The element (z includes :: set y) specifying that the sequence element z includes the ele-
ments of the sequence element y is defined as follows:
(de finition (x includes :: set y) var (z, y)
where ((z is sequence) and (y is sequence)) then (x includes : set y) :: atm);
(interpretation (x includes :: set y) :: atm var (x, y) then f,),
where [f,, sp] = [if e € xo for each e; € yo] then true else und].
The element (attributes in x) specifying the sequence of attributes of the attribute element
x is defined as follows:
(definition (attributes in x) var (x) where (x is attribute)
then (attributes in x) :: atm);
(interpretation (attributes in x) :: atm var (x, y) then f,),
where [f, Sp] = (Qrg1s ey Qrgny) TOr To = (g1 1 VL1, ooy Qrgng © Vingg)-
The element (values in x) specifying the sequence of attribute values of the attribute element
x is defined as follows:
(de finition (values in x) var (x) where (x is attribute) then (values in x):: atm);
(interpretation (values in x) :: atm var (z, y) then f,),
where [f,, Sp] = (Vi1 -y Vingg) TOr To = (Arg1 = Vit ooy Qrgimgg © Vingg )-
The element (element in z) specifying the element of the sorted element x is defined as

follows:
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(definition (element in x) var (x) then (if x matches y::z var (y, z) then y:q)).
The element (sort in x) specifying the sort of the sorted element x is defined as follows:
(de finition (sort in x) var (x) then (if x matches y:: z var (y, z) then z:q)).
The element (attribute in x) specifying the attribute of the element update x is defined as
follows:
(de finition (attribute in z) var (x) then (if x matches y:z var (y, z) then y:: q)).
The element (value in x) specifying the value of the element update x is defined as follows:

(de finition (value in z) var (x) then (if x matches y:z var (y, z) then z:q)).
15.5. Boolean operations

The element true is defined as follows:
(de finition true then true : q).

The element (z and y) specifying the conjunction of z and y is defined as follows:
(definition (x and y) var (z, y) then (if x then y else und)).

The elements (x o, y), where o, € {or,=>, <=>} specifying the disjunction, implication
and equivalence of x and y are defined in the similar way.

The element (1 and x5 and ... and z,,) specifying the conjunction of x1, xs, ..., T,, is defined
as follows:
(de finition (x and y and z) var (x, y) seq (z) then ((z and y) and 2).

The element (z1 or x5 or ... or x,,) specifying the disjunction of x;, xs, ..., z,, is defined in
the similar way.

The element (not x) specifying the negation of x is defined as follows:

(de finition (not x) var (z) then (if z then und else true)).
15.6. Integers

The element 4, is defined as follows:
(definition x var (z) where (x is int) then x :: q) :: name : ("Q7 int).
The definition satisfies the property: ("@Q”, exception) <[o,,....] ("@",int).
The element (z + y) specifying the sum of z and y is defined as follows:
(definition (x + y) var (x, y) val (x, y)
where ((z :: % is int) and (y :: * is int)) then (x:x + y:%):atm);

(interpretation (xr + y)::atm var (x, y) then f,),
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where [f, sp] = [ro + ol
The elements (z o, y), where o, € {—, %, }, specifying the integer operations — and * are
defined in the similar way.
The element (z div y) specifying the quotient of x divided by y is defined as follows:
(definition (x div y) var (z, y) val (z, y)
where ((z:: % is int) and (y:: * is int) and (y:x = 0))
then (x % div y:: %) atm);
(interpretation (z div y) :: atm var (x, y) then f,),
where [f,, sp] = [z0 div yo).
The element (x mod y) specifying the integer operation mod is defined in the similar way.
The element (x < y) specifying that x is less than y is defined as follows:
(definition (x < y) var (x, y) val (x, y)
where ((z % is int) and (y == * is int)) then (z:x < y:x):atm);
(interpretation (x < y):atm var (z, y) then f,),
where [f, sp] = [r0 < wo)-
The elements (x o, y), where o, € {<=,>,>=}, specifying the integer relations <, > and

>, are defined in the similar way.
15.7. Conceptuals operations

The element (x in y) specifying the value of the conceptual z in the state y is defined as
follows:
(de finition (x in y) var (x, y)
where ((z is conceptual) and (z is state)) then (z in y) :: atm);
(interpretation (x in y):: atm var (z, y) then f,),
where [f, sp] = [yo %o)-
The element z :: state :: y specifying the value of the conceptual z in the substate with the
name y of the current configuration is defined as follows:
(definition x :: state ::y var (x, y) where (z is conceptual)
then (x in (conf ::q .. y)) x : state ::y :: atm);
(in x :: state :: y > atm var (z, y) then f,),
where (zg :: state 2 yo =2 atm, e # Cnf =45, €x F [[Cnf Yo] To] # Cny-

The element ¢, is a shortcut for ¢y 2 ().
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15.8. Countable concepts operations

A normal element ¢, is a countable concept in [c,f] if [[c,; countable—concept] (O :
Cnep.e)] € Ni. Thus, the substate countable—concept specifies countable concepts. Let Ciep.. be
a set of countable concepts. The element [[c, s countable—concept] (0 : ¢pepc)] is called an order
in [chep.cs Cnrl- Let Orgenep.c be a set of orders of countable concepts. An element 7y :: cc i Cpep.e
is called an instance in [cpepc]. An element ny :: cc t Cpep.e 1S an instance in [cpepe, Cng] if
1t < Ord.encp.c|Cnep.cs Cnf]-

The element (x is countable—concept) specifying that x is a countable concept is defined as
follows:

(de finition (x is countable—concept) var (z)
then (let w be ((enf .. countable—concept) .. (0:x)) in (w is int)).

The element 7 :: cc it ¢pep.c is defined by the rule:

(de finition x :: cc::y var (z, y) where ((x is int) and (y is countable—concept))

then x::cc:y:q).
15.9. Matching operations

The conditional pattern matching element e; of the form (if x matches y var z seq u then v
else w), where (y, z,u) is a pattern specification, is defined as follows:
(definition (if x matches y var z seq u then v else w) var (x, y, z, u, v, W)
where ((z is sequence) and (u is sequence) and (z includes :: set u))
then (if x matches y var z seq u then v else w) :: atm);
(interpretation (if x matches y var z seq u then v else w) :: atm
var (z, y, z, u, v, w) then f,),
where [value (if xg matches yo var zy seq ug then vy else wy) = atm Sy Cuyl, €1s # Cnf —>f.s,
[if [xo is an instance in [(yo, 2o, Uo), Me, Sp1] for some s;1] then [subst sp1 U (conf :in : cyy)
vo] else [subst (conf ::in : c,f) wol, e« # cnp. The objects x, y, z, u, v and w are called a
matched element, pattern, variable specification, sequence variable specification, then-branch
and else-branch in [e;]. The elements of z are called pattern variables in [e;]. The element ¢
executes the instance of the then-branch v in [sy4] if « is an instance in [y, s51]. Otherwise,
the element e; executes the else-branch w.
Let {4}, {05}, {Urs1} and {v,.2} are pairwise disjoint, and {v,.3} C {v,.} U{vs1} U

{vy«2}. The form (if e; matches p; var (v,..) seq (Vrsx) abn (V1) und (vy.2) val (v,.3) where
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Cna then e else e;) is defined as follows:

o (if e, matches py var (v,.) seq (Vy.s.s) und (Vy.1) abn (Vy.2) val (Vy.3) where c,q then e; 1
else e o) is a shortcut for (if e; matches p, var (v,..) seq (Vrs.) abn (Vy.1) und (v,42) val
(Ur3) then (if cpq then ey else €5 :: (nosubstexcept conf ::in)) else es);

o (if e; matches py var (vr.) seq (Upss) und (V1) abn (Vp.o) val (v,.3, v.) then ey else
er2) is a shortcut for (if e; matches p; var (v,.) seq (Ups.) und (vy.1) abn (vy.2) val
(Urx3) then (let w be v, in [subst (v, :: % : w) e;q]) else e2), where w is a new element
that does not occur in this definition;

o (if e, matches p, var (v..) seq (Vysx) und (Vy.1) abn (v..2) val () then ey else e o) is
a shortcut for (if e, matches p, var (v,..) seq (Vys.) und (V1) abn (v..2) then e, else
e12);

o (if e; matches py var (v..) seq (Vys.) und (Vys1, V) abn (v,.2) then by) is a shortcut for
(if e matches py var (v..) seq (Vys4) und (Vp.1) abn (V..2) then (if (v, is undefined)
then und else e; 1) else e5);

o (if e, matches p, var (v..) seq (Vrs.) und () abn (v..2) then ey else e;2) is a shortcut
for (if e; matches p; var (v,..) seq (Vrsx) abn (v,.2) then e else e;s);

o (if e, matches p; var (v,.) seq (Vy.s4) abn (Vp.2, v.) then e, else e;3) is a shortcut for
(if e, matches py var (v,.) seq (Vrs.) abn (vp.2) then (if (v, is abnormal) then v, else
er1) else ep2);

o (if e matches py var (v,..) seq (v.sx) abn () then e; else es) is a shortcut for

(if e matches p, var (v..) seq (V.s4) then e else e;3).

The element c¢,,4 specifies the restriction on the values of the pattern variables. The undefined
value is propagated through the variables of v,,;. Abnormal values are propagated through
the variables of v, 5. The special element v, :: * references to the value of element associated
with the pattern variable v,. A pattern variable is evaluated if the element associated with it
is evaluated. Thus, the sequence v, , 3 contains evaluated pattern variables. A pattern variable
is quoted if the element associated with it is not evaluated.

The objects var (v,.), seq (Vr.sx), und (Vy41), abn (vVy.2), val (v..3), where c,q and else €5
in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),
val (), where true and else skip, respectively.

The form (e, matches p, var (v,..) seq (Vrsx) und (Vps1) abn (Vy40) val (V..3) where c,q) is

a shortcut for (if e, matches p; var (v,..) seq (Vy.s.) und (Vy1) abn (Vy.2) val (V..3) where cpq
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then true else und). The objects var (v..), seq (Vrs.s), und (Vy.1), abn (Vy4.2), val (v,..3) and

where cpq in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

15.10. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:

(de finition conf :: cur then conf :: cur :: atm);

(interpretation conf :: cur :: atm then f,),

where [f,, sp] = Cns.

16. Justification of requirements

for conceptual configuration systems

In this section, we establish that CCSs meet the requirements stated in section 1:

1.

The formalism must model the conceptual structure of states and state objects of the
IQS. The conceptual structure of states of the IQS is modelled by elements (attributes,
concepts, individuals) and, in more detail, usual and generic conceptuals of conceptual

configurations.

. The formalism must model the content of the conceptual structure. The content of the

conceptual structure is modelled by conceptual configurations.

. The formalism must model information queries, information query objects, answers and

answer objects of the IQ)S. Information queries, information query objects, answers and

answer objects of the IQS are modelled by elements of the CCS.

. The formalism must model the interpretation function of the IQS. The interpretation

function of the IQS is modelled by the interpretation function value of the CCS.

. The formalism must be quite universal to model typical ontological elements. Models of

typical ontological elements is presented in sections 6-10, 12 and 13.

. The formalism must provide a quite complete classification of ontological elements, in-

cluding the determination of their new kinds and subkinds with arbitrary conceptual gran-
ularity. Classification of ontological elements based on the two-level scheme is presented

in section 11. The arbitrary conceptual granularity is provided by conceptuals.

. The model of the interpretation function must be extensible. The model of the interpre-

tation function of the IQS is extended by addition of element definitions.
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8. The formalism must have language support. The language associated with the formalism
must define syntactic representations of models of states, state objects, queries, query
objects, answers and answer objects and includes the set of predefined basic query models.
The CCSL language associated with CCSs defines syntactic representations of models of
states, state objects, queries, query objects, answers and answer objects and includes the

set of predefined basic query models.

Thus, the requirements are met for CCSs.

17. Comparison of conceptual configuration systems

with abstract state machines

Abstract state machines (ASMs) [3, 4] are the special kind of transition systems in which
states are algebraic systems. They are a formalism for abstract unified modelling of computer
systems. We compare CCSs with ASMs, based on the requirements stated in section 1:

1. The formalism models the conceptual structure of states of the I1QS. The conceptual struc-
ture of states of the IQS is modelled by the appropriate choice of symbols of the signature
of an algebraic system. Thus, both ASMs and CCSs model the conceptual structure of
states of the IQS, but CCSs make it by more natural ontological way.

2. The formalism models the content of the conceptual structure. The content of the con-
ceptual structure is modelled by the interpretation of signature symbols in a particular
state.

3. The formalism must model information queries, information query objects, answers and
answer objects of the IQ)S. Information queries and information query objects of the 1QS
are modelled by terms, and answers and answer objects of the IQS are modelled by values
of the terms. The element-based representation in CCSs is reacher than the term-based
representation in ASMs.

4. The formalism must model the interpretation function of the 1QS. The interpretation
function of the IQS are modelled by the term interpretation function that is simpler than
the element interpretation function in CCSs.

5. The formalism s quite universal to model typical ontological elements. In contrast to
CCSs, typical ontological elements are not naturally modelled by ASMs.

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds with arbitrary conceptual granularity.
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In contrast to CCSs, ASMs do not allow to classify naturally ontological elements and
define their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible. The model of the interpre-
tation function can not be directly extended in ASMs.

8. The formalism must have language support. There are two languages AsmL [5] and XasM
[6] for specification of ASMs. The AsmL language is more expressive than CTSL. It is
fully integrated into the Microsoft .NET environment and uses XML and Word for literate
specifications. XASM realizes a component-based modularization concept based on the

notion of external functions as defined in ASMs.

18. Conclusion

In the paper two formalisms (information query systems and conceptual configuration sys-
tems) for abstract unified modelling of the artifacts of the conceptual design of closed infor-
mation systems have been proposed. The basic definitions of the theory of CCSs have been
given. The classification and interpretation of elements of such conceptual structures of CCSs
as conceptuals, conceptual states, conceptual configurations, concepts and attributes has been
presented. The classification of ontological elements based on these conceptual structures has

been described. A language of CCSs has been defined.

The feature of conceptual design for closed information systems based on conceptual con-
figuration systems is that they allow us to describe the conceptual structure of states of the
information systems in detail. We plan to extend this formalism to describe both states and
state transitions in detail and apply it for conceptual design of wider class of information

systems.
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