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Formalisms for conceptual design

of closed information systems∗

Anureev I.S. (Institute of Informatics Systems)

A closed information system is an information system such that its environment does

not change it, and there is an information transfer from it to its environment and from its

environment to it. In this paper two formalisms (information query systems and conceptual

configuration systems) for abstract unified modelling of the artifacts (concept sketches and

models) of the conceptual design of closed information systems, early phase of informa-

tion systems design process, are proposed. Information query systems defines the abstract

unified information model for the artifacts, based on such general concepts as state, infor-

mation query and answer. Conceptual configuration systems are a formalism for concep-

tual modelling of information query systems. They defines the abstract unified conceptual

model for the artifacts. The basic definitions of the theory of conceptual configuration

systems are given. These systems were demonstrated to allow to model both typical and

new kinds of ontological elements. The classification of ontological elements based on such

systems is described. A language of conceptual configuration systems is defined.

Keywords: closed information system, information query system, conceptual structure,

ontology, ontological element, conceptual, conceptual state, conceptual configuration, con-

ceptual configuration system, conceptual information query model, CCSL

1. Introduction

The conceptual models play an important role in the overall system development life cycle

[1]. Numerous conceptual modelling techniques have been created, but all of them have a

limited number of kinds of ontological elements and therefore can only represent ontological

elements of fixed conceptual granularity. For example, entity-relationship modelling technique

[2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts

(concept sketches and models) of the conceptual design of closed information systems (IS for

short) by ontological elements of arbitrary conceptual granularity. In our two stage approach

the informational and conceptual aspects of the system that the conceptual model represents are
∗Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project

No.15/10.
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described by two separate formalisms. The first formalism describes the informational model

of the system, and the second formalism describes the conceptual model of the informational

model.

The first formalism called an information query system (IQS for short) is a system charac-

terized by sets of states, state objects, information queries, information query objects, answers,

answer objects and an interpretation function. States of an IQS models the information storage

in an IS modelled by the IQS, queries of the IQS model the information transferring from an

environment to the IS to get the storage content, and answers of the IQS model the information

transferring from the IS to the environment initiated by these queries. State objects, query

objects and answer objects are objects that can be observed in states, queries and answers,

respectively. They describe the observed internal structure of states, queries and answers. The

interpretation function models the information transfer from the IS to its environment and from

its environment to the IS. It associates queries with functions from states to answers.

A wide variety of information systems is modelled by IQSs in the information aspect, includ-

ing search services with search results as answers, factual factographic databases with factual

information as answers, document databases with documents as answers, content consump-

tion devices with content information as answers, logical systems with truth values as answers,

formalisms specifying denotational semantics of programming languages with denotations as

answers and so on.

We consider that the second formalism used for for conceptual modelling of IQSs must meet

the following general requirements (in relation to modelling of a IQS):

1. It must model the conceptual structure of states and state objects of the IQS.

2. It must model the content of the conceptual structure.

3. It must model information queries, information query objects, answers and answer objects

of the IQS.

4. It must model the interpretation function of the IQS.

5. It must be quite universal to model typical ontological elements (concepts, attributes,

concept instances, relations, relation instances, types, domains, and so on.).

6. It must provide a quite complete classification of ontological elements, including the

determination of their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible.

8. It must have language support. The language associated with the formalism must define
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syntactic representations of models of states, state objects, queries, query objects, answers

and answer objects and includes the set of predefined basic query models.

To our knowledge, there is no formalism that meets all the above requirements. Therefore,

we propose a new formalism, conceptual configuration systems (CCS for short), that meets

these requirements.

The paper has the following structure. The preliminary concepts and notation are given

in section 2. The formal definition of IQSs and the basic definitions of the theory of CCSs

are given in section 3. The structure of conceptuals (atomic conceptual structures of CCSs)

is described in section 4. The structure of conceptual states is considered in section 5. The

classification of elements of conceptual states such that concepts, attributes and individuals is

presented in section 6. The structure of concepts is described in section 7. The classification and

interpretation of concepts is given in 8. The structure of attributes is described in section 9. The

classification and interpretation of attributes is given in 10. The classification of conceptuals

and ontological elements modelled by these conceptuals is presented in section 11. Relations,

types, domains and inheritance are modelled by conceptual structures of CCSs in section 12.

Generic conceptuals describing sets of conceptuals satisfying a pattern are defined in section

13. The language CCSL of CCSs is described in section 14. The semantics of interpretable

elements in CCSL is defined in section 15. We establish that CCSs meet the above requirements

in section 16. CCSs are compared with the related formalism, abstract state machines [3, 4],

in section 17.

2. Preliminaries

2.1. Sets, sequences, multisets

Let Ob be the set of objects considered in this paper. Let St be a set of sets. Let Int, Nt,

Nt0 and Bl be sets of integers, natural numbers, natural numbers with zero and boolean values

true and false, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the

elements of sets be represented by the corresponding small letters possibly with extended sub-

scripts. For example, int and int.1 are elements of Int.

Let Sq be a set of sequences. Let st.(∗), st.{∗}, and st.∗ denote sets of sequences of the forms

(ob.1, . . . , ob.nt0), {ob.1, . . . , ob.nt0}, and ob.1, . . . , ob.nt0 from elements of st. For example, Int.(∗) is a

set of sequences of the form (int.1, . . . , int.nt0), and int.∗ is a sequence of the form int.1, . . . , int.nt0 .
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Let ob.1, . . . , ob.nt0 , denote ob.1, . . . , ob.nt0 . Let st.(∗nt0), st.{∗nt0}, and st.∗nt0 denote sets of the

corresponding sequences of the length nt0.

Let ob.1 ≺JsqK ob.2 denote the fact that there exist ob.∗.1, ob.∗.2 and ob.∗.3 such that sq =

ob.∗.1, ob.1, ob.∗.2, ob.2, ob.∗.3, or sq = (ob.∗.1, ob.1, ob.∗.2, ob.2, ob.∗.3).

Let [ob ob.1 ←↩ ob.2] denote the result of replacement of all occurrences of ob.1 in ob by ob.2.

Let [sq ob ←↩∗ ob.1] denote the result of replacement of each element ob.2 in sq by [ob.1 ob ←↩ ob.2].

For example, [(a, b) x←↩∗ (f x)] denotes ((f a), (f b)).

Let [len sq] denote the length of sq. Let und denote the undefined value. Let [sq . nt] denote

the nt-th element of sq. If [len sq] < nt, then [sq . nt] = und. Let [sq + sq.1], [ob . + sq] and

[sq + . ob] denote ob.∗, ob.∗.1, ob, ob.∗ and ob.∗, ob, where sq = ob.∗ and sq.1 = ob.∗.1.

Let [and sq] denote (cnd.1 and . . . and cnd.nt), where sq = cnd.1, ..., cnd.nt , and [and] denote

true. In the case of nt = 1, the brackets can be omitted.

Let ob.1, ob.2 ∈ St ∪ Sq. Then ob.1 =st ob.2 denote that the sets of elements of ob.1 and ob.2

coincide, and ob.1 =ml ob.2 denote that the multisets of elements of ob.1 and ob.2 coincide.

2.2. Contexts

The terms used in the paper are context-dependent.

Let Lb be a set of objects called labels. Contexts have the form Job.∗K, where the elements

of ob.∗ called embedded contexts have the form: lb:ob, lb: or ob.

The context in which some embedded contexts are omitted is called a partial context. All

omitted embedded contexts are considered bound by the existential quantifier, unless otherwise

specified.

Let obJob.∗K denote the object ob in the context Job.∗K.

The object ’in Job, ob.∗K’ can be reduced to ’in JobK in Job.∗K’ if this does not lead to ambiguity.

2.3. Functions

Let Fn be a set of functions. Let Arg and Vl be sets of objects called arguments and values.

Let [fn arg.∗] denote the application of fn to arg.∗.

Let [support fn] denote the support in JfnK, i. e. [support fn] = {arg : [fn arg] 6= und}.

Let [image fn st] denote the image in Jfn, stK, i. e. [image fn st] = {[fn arg] : arg ∈ st}. Let

[image fn] denote the image in Jfn, [support fn]K. Let [narrow fn st] denote the function fn.1

such that [support fn.1] = [support fn.1]∩st, and [fn.1 arg] = [fn arg] for each arg ∈ [support fn.1].
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The function fn.1 is called a narrowing of fn to st. Let [support fn.1] ∩ [support fn.2] = ∅. Let

fn.1 ∪ fn.2 denote the union fn of fn.1 and fn.2 such that [fn arg] = [fn.1 arg] for each arg ∈

[support fn.1], and [fn arg] = [fn.2 arg] for each arg ∈ [support fn.2]. Let fn.1 ⊆ fn.2 denote the

fact that [support fn.1] ⊆ [support fn.2], and [fn.1 arg] = [fn.2 arg] for each arg ∈ [support fn.1].

An object up of the form arg : vl is called an update. Let Up be a set of updates. The objects

arg and vl are called an argument and value in JupK.

Let [fn up] denote the function fn.1 such that [fn.1 arg] = [fn arg] if arg 6= argJupK, and

[fn.1 argJupK] = vlJupK. Let [fn up, up.∗nt ] be a shortcut for [[fn up] up.∗nt ]. Let [fn arg.arg.1. . . .

.arg.nt : vl] be a shortcut for [fn arg : [[fn arg] arg.1. . . . .arg.nt : vl]]. Let [up.∗] be a shortcut for

[fn up.∗], where [support fn] = ∅.

Let Cnd be a set of objects called conditions. Let [if cnd then ob.1 else ob.2] denote the object

ob such that

• if cnd = true, then ob = ob.1;

• if cnd = false, then ob = ob.2.

2.4. Attributes and multi-attributes

An object ob.ma of the form (up.∗) is called a multi-attribute object. Let Ob.ma be a set

of multi-attribute objects. The elements of [ob.ma w ←↩∗ argJwK] are called multi-attributes

in Job.maK. Let Ob.ma be a set of multi-attributes. The elements of [ob.ma w ←↩∗ vlJwK] are

called values in Job.maK. The sequence up.∗ is called a sequence in Job.maK and denoted by

[sequence in ob.ma]. An object vl is a value in Jatt.m, ob.maK if ob.ma = (up.∗.1, att.m : vl, up.∗.2) for

some up.∗.1 and up.∗.2.

An object ob.ma is an attribute object if the elements of [ob.ma w ←↩∗ argJwK] are pairwise

distinct. Let Ob.a be a set of attribute objects. The multi-attributes in Job.aK are called attributes

in Job.aK. Let Att be a set of objects called attributes.

Let [function ob.a], [ob.a att], and [support ob.a] denote [[sequence in ob.a]], [[function ob.a] att],

and [support [function ob.a]].

Let [seq−to−att−obj sq] denote (1 : [sq . 1], ..., [len sq] : [sq . [len sq]]). Let ob.a =st (1 :

vl.1, ..., nt : vl.nt). Then [att−obj−to−seq ob.a] denote (vl.1, ..., vl.nt).

3. Basic definitions of the theory of conceptual configuration systems

3.1. Information query systems
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Let Stt be a state of objects called states. An object ss.q.i of the form (Stt, Ob.s, Qr, Ob.q, Ans,

Ob.a, value) is an information query system if Stt, Ob.s, Qr, Ob.q, Ans and Ob.a are nonempty

sets, Stt ⊆ Ob.s, Qr ⊆ Ob.q, und ∈ Ans, Ans ⊆ Ob.a, value ∈ Qr × Stt → Ans, and for all qr ∈ Qr

there exists stt ∈ Stt such that [value qr stt] 6= und. Let Ss.q.i be a set of information query

systems.

The elements of Stt, Ob.s, Qr, Ob.q, Ans and Ob.a are called states, state objects, information

queries, information query objects, answers and answer objects in Jss.q.iK, respectively. The

function value is called a query interpretation in Jss.q.iK. An object ob.s is a proper state object

if ob.s /∈ Stt. An object ob.q is a proper query object if ob.q /∈ Qr. An object ob.a is a proper

answer object if ob.a /∈ Ans.

As a through illustrative example of the IQS modelled by CCSs we use the geometric system

that includes the following proper state objects:

• kinds of geometric spaces (Euclidean, Riemannian, Lobachevskian and so on);

• kinds of geometric figures (triangles, rectangles, cubes and so on);

• numerical characteristics of geometric figures (length, area, volume and so on);

• units of measurement of numerical characteristics (inches, centimeters, metres and so on);

• values of numerical characteristics represented by real numbers;

• numeral systems for representing values of numerical characteristics (binary, octal, deci-

mal and so on);

• dimensions of geometric spaces represented by natural numbers;

• named geometric figures represented by elements of the set Fg).

A state of the geometric system is a set of relations between proper state objects. For

example, the relation {figure : fg, kind : triangle, space : Euclidean} in JsttK means that fg is a

triangle in Euclidean space in JsttK, the relation {figure : fg, characteristic : perimeter, value :

20} in JsttK means that perimeter of fg equals 20 in JsttK, and the relation {kind : cube, space :

Euclidean, characteristic : volume, unit : inch) in JsttK means volume of cubes in Euclidean

space measured in inches in JsttK.

The possible queries in the geometric system can be “area of fg”, “fg is a triangle” and “unit

of measurement of perimeter of fg” returning a number, boolean value and unit of measurement

as answers.

3.2. Atoms
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A set Atm is a set of atoms if Int ∪ {true, und} ⊆ Atm. Structures of CCSs are constructed

from atoms. Therefore, they are implicitly defined in JAtmK.⊕
Let Fg ⊆ Atm.

3.3. Elements

Elements are basic structures of CCSs. They model query objects, answer objects and some

proper state objects of IQSs. Let El be a set of objects called elements. An object el of the

forms atm, el.(∗), el.1 : el.2, or el.1 :: el.2 is called an element.

An element el.(∗) of the form (el.∗) is called a sequence element. The object el.∗ is called

a sequence in Jel.(∗)K and denoted by [sequence in el.(∗)]. The element () is called an empty

element.

An element up.e of the form att : vl is called an element update. Let Up.e be a set of element

updates. The elements att and vl are called an attribute and value in Jup.eK.

Let Srt be a set of objects called sorts. An element el.s of the form el :: srt is called a sorted

element. Let El.s be a set of sorted elements. The elements el and srt are called an element

and sort in JelK.

An element exc of the form el :: exc is called an exception. Let Exc be a set of exceptions.

The element el is called a value in JexcK. Thus, the sort exc specifies exceptions. Exceptions in

CCSs play the role that is analogous to the role of exceptions in programming languages. An

element el is abnormal if el ∈ Exc, or el = und. Let El.ab be a set of abnormal elements. An

element el is normal if el is not abnormal. Let El.n be a set of normal elements.

An element el.ma is a multi-attribute element if el ∈ Ob.ma. Let El.ma be a set of multi-

attribute elements. An element el.a is an attribute element if el ∈ Ob.a. Let El.a be a set of

attribute elements.⊕
The element (fg, is, triangle) means that fg is a triangle.

3.4. Conceptuals

Conceptuals are atomic conceptual structures of CCSs. Conceptual structures of CCSs are

constructed from conceptuals. Conceptuals model some proper state objects of IQSs. An

attribute element cncpl is a conceptual if [support cncpl] ⊆ Int. Let Cncpl be a set of conceptuals.

An element of the form int : el is called a conceptual update. Let Up.c be a set of conceptual

updates.



76 Anureev I.S. Formalisms for conceptual design of closed information systems

⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

the following properties hold:

– cncpl is a conceptual;

– −3 : 10, −2 : inch, −1 : area, 0 : fg, 1 : triangle, 2 : Euclidean and 3 : 2 are

conceptual updates;

– cncpl models the area (the attribute −1) of the triangle (the attribute 1) fg (the

attribute 0) in three-dimensional (the attribute 3) Euclidean (the attribute 2) space,

measured in inches (the attribute −2) in the decimal system (the attribute −3).

3.5. Conceptual states

Conceptual states are conceptual structures of CCSs specifying values of conceptuals. They

model some proper state objects of IQSs. An attribute element stt is a conceptual state if

[support stt] ⊆ Cncpl. Thus, stt can reference to either a state of a IQS or a conceptual state of

a QTS depending on the context.

A function value ∈ Cncpl × Stt → El is a conceptual interpretation if [value cncpl stt] =

[stt cncpl]. The element [value cncpl stt] is called a value in Jcncpl, sttK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

stt = (cncpl : 3). Then the following properties hold:

– [value cncpl stt] = 3;

– 3 is the value in Jcncpl, sttK;

– area of the triangle fg in two-dimensional Euclidean space equals 3 inches in the

decimal system in JsttK.

3.6. Conceptual configurations

Conceptual configurations are conceptual structures of CCSs partitioning states into named

substates. They model states of IQSs. Let Nm be a set of objects called names. An attribute

element cnf is a conceptual configuration if [image cnf ] ⊆ Stt. Let Cnf be a set of configurations.

An element nm is a name in JcnfK if nm ∈ [support cnf ]. An element nm is a name in Jstt, cnfK

if [cnf nm] = stt. An element stt is a substate in JcnfK if stt ∈ [image cnf ]. An element stt is a

substate in Jnm, cnfK if [cnf nm] = stt. A substate stt is unnamed in JcnfK if [cnf ()] = stt. The

element () is called an unnamed substate specifier.

A function value ∈ Cncpl × El × Cnf → El is a conceptual interpretation if [value cncpl nm
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cnf ] = [value cncpl [cnf nm]]. The element [value cncpl nm cnf ] is called a value in Jcncpl, nm, cnfK.

An element stt.n of the form stt :: state :: nm is called a named state. Let Stt.n be a set of

named states. The elements stt and nm are called a state and name in Jstt.nK. The element stt

references to stt :: state :: () in the context of named states.

An element cncpl.n of the form cncpl :: state :: nm is called a named conceptual. Let Cncpl.n

be a set of named conceptuals. It specifies the conceptual cncpl in the state with the name nm.

The elements cncpl and nm are called a conceptual and name in Jcncpl.nK. The element cncpl

references to cncpl :: state :: () in the context of named conceptuals.

A function value ∈ Cncpl.n × Cnf → El is a conceptual interpretation if [value cncpl.n cnf ] =

[value cncplJcncpl.nK nmJcncpl.nK cncpl]. The element [value cncpl.n cnf ] is called a value in Jcncpl.n,

cnfK.

3.7. Substitutions, patterns, pattern specifications, instances

A function sb ∈ El → El.∗ is called a substitution. Let Sb be a set of substitutions. A

function subst ∈ Sb × El.∗ → El.∗ is a substitution function if it is defined as follows (the first

proper rule is applied):

• if el ∈ [support sb], then [subst sb el] = [sb el];

• [subst sb atm] = atm;

• [subst sb lb : el] = [subst sb lb] : [subst sb el];

• [subst sb el :: nosubst] = el;

• [subst sb el :: (nosubstexcept el.∗)] = [subst [narrow sb {el.∗}] el];

• [subst sb el :: srt] = [subst sb el] :: [subst sb srt];

• [subst sb (el.∗)] = ([el.∗ w ←↩∗ [subst sb w]]);

• [subst sb el.∗] = [el.∗ w ←↩∗ [subst sb w]].

The sort nosubst specifies the elements to which the substitution sb is not applied. The sort

(nosubstexcept el.∗) specifies the elements to which the narrowing of the substitution sb to the

set el.∗ is applied. An element pt is a pattern in Jel, sbK if [subst sb pt] = el. Let Pt be a set of

patterns. An element inst is an instance in Jpt, sbK if [subst sb pt] = inst. Let Inst be a set of

instances.

Let Vr and Vr.s be sets of objects called element variables and sequence variables, respectively.

An element pt.s of the form (pt, (vr.∗), (vr.s.∗)) is a pattern specification if {vr.s.∗}∩{vr.∗} = ∅, and

the elements of {vr.∗} ∪ {vr.s.∗} are pairwise distinct. Let Pt.s be a set of pattern specifications.
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The objects pt, (vr.∗), and (vr.s.∗) are called a pattern, element variable specification, and

sequence variable specification in Jpt.sK. The elements of vr.∗ and vr.s.∗ are called element pattern

variables and sequence pattern variables in Jpt.sK, respectively.

An element inst is an instance in Jpt.s, sbK if [support sb] = {vr.∗}, [sb vr] ∈ El for vr ∈

{vr.∗} \ {vr.s.∗}, [sb vr] ∈ El.∗ for vr ∈ {vr.s.∗}, and inst is an instance in Jpt, sbK. An element inst

is an instance in Jpt.sK if there exists sb such that inst is an instance in Jpt.s, sbK.

A function mt ∈ El × Pt.s → Sb is a match if the following property holds:

• if [mt el pt.s] = sb, then el is an instance in Jpt.s, sbK.

An element inst is an instance in Jpt.s,mt, sbK if [mt inst pt.s] = sb. An element inst is an

instance in Jpt.s,mtK if there exists sb such that inst is an instance in Jpt.s,mt, sbK.

3.8. The element interpretation

Queries and answers of a IQS is modelled by elements, and the query interpretation of the

IQS is modelled by the element interpretation value ∈ El×Cnf → El based on atomic element

interpretations, element definitions and the element interpretation order.

The special variable conf :: in references to the current configuration in the definitions

below.

An object intr.a of the form (pt, (vr.∗), (vr.s.∗), fn) is an atomic element interpretation if

(pt, (vr.∗), (vr.s.∗)) is a pattern specification, conf :: in /∈ {vr.∗} ∪ {vr.s.∗}, fn ∈ Sb → El,

[support fn] = {sb : [support sb] = {vr.∗} ∪ {vr.s.∗} ∪ {conf :: in}, [sb vr] ∈ El for vr ∈

{vr.∗}, and [sb vr] ∈ El.∗ for vr ∈ {vr.s.∗}}. Let Intr.a be a set of atomic element interpreta-

tions.

The objects pt, (vr.∗), (vr.s.∗), and fn are called a pattern, element variable specification,

sequence variable specification, and value in Jintr.aK. The elements of vr.∗ and vr.s.∗ are called

element pattern variables and sequence pattern variables in Jintr.aK, respectively.

A function intr.a.s ∈ El → Intr.a is called an atomic element interpretation specification

if [support intr.a.s] is finite. An interpretation intr.a is an atomic element interpretation in

Jintr.a.sK if [intr.a.s nm] = intr.a for some nm ∈ El. An element nm is a name in Jintr.a, intr.a.sK

if [intr.a.s nm] = intr.a. An element nm a name in Jintr.a.sK if nm is a name in Jintr.a, intr.a.sK for

some intr.a.

An element df of the form (pt, (vr.∗), (vr.s.∗), bd) is an element definition if (pt, (vr.∗), (vr.s.∗)) is

a pattern specification, and conf :: in /∈ {vr.∗}∪{vr.s.∗}. Let Df be a set of element definitions.
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The objects pt, (vr.∗), (vr.s.∗) and bd are called a pattern, element variable specification,

sequence variable specification and body in JdfK. The elements of vr.∗ and vr.s.∗ are called

element pattern variables and sequence pattern variables in JdfK, respectively.

An attribute element df.s is called an element definition specification if [support df.s] ⊆ El,

and [image df.s] ⊆ Df . A definition df is an element definition in Jdf.sK if [df.s nm] = df for

some nm ∈ El. An element nm is a name in Jdf , df.sK if [df.s nm] = df . An element nm a name

in Jdf.sK if nm is a name in Jdf , df.sK for some df .

Let [support intr.a.s] ∩ [support df.s] = ∅.

An element ord.intr of the form (nm.∗) is called an element interpretation order in Jintr.a.s, df.sK

if {nm.∗} ⊆ [support intr.a.s] ∪ [support df.s], and the elements of nm.∗ are pairwise distinct. It

specifies the order of application of atomic element interpretations and element definitions to

the element to be interpreted.

The information about the element definition specification and element interpretation order

of configurations is stored in the substate interpretation of the configurations. The conceptuals

(0 : definitions) :: state :: interpretation and (0 : order) :: state :: interpretation define the

element definition specification and element interpretation order of the configurations, respec-

tively.

An element cnf is consistent with (intr.a.s, df.s, ord.intr) if the following properties hold:

• if [support intr.a.s] ∩ [support [cnf (0 : definitions) :: state :: interpretation]] = ∅;

• df.s ⊆ [cnf (0 : definitions) :: state :: interpretation];

• if nm.1 ≺Jord.intrK nm.2, and nm.1, nm.2 ∈ [cnf (0 : order) :: state :: interpretation], then

nm.1 ≺J[cnf (0:order)::state::interpretation]K nm.2.

A function value ∈ El ×Cnf → El is an element interpretation in Jintr.a.s, df.s, ord.intr,mtK if

[value el cnf ] = [value el cnf [cnf (0 : order) :: state :: interpretation]]. It specifies interpreta-

tion of elements in the context of configurations. The element [value el cnf ] is called a value in

Jel, cnfK.

The auxiliary function value ∈ El×Cnf ×Nm.(∗) → El is defined by the following rules (the

first proper rule is applied):

• if cnf is not consistent with (intr.a.s, df.s, ord.intr), then [value el cnf nm.(∗)] = und;

• if intr.a = [intr.a.s nm], el is an instance in Jpt.sJintr.aK,mt, sbK, and [fnJintr.aK sb ∪ (conf ::

in : cnf )] 6= und, then [value el cnf (nm nm.∗)] = [fnJintr.aK [sb conf : cnf ]];

• if df = [[cnf (0 : definitions) :: state :: interpretation] nm], el is an instance in
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Jpt.sJdfK,mt, sbK, and [value [subst sb ∪ (conf :: in : cnf ) bdJdfK] cnf ] 6= und, then

[value el cnf (nm nm.∗)] = [value [subst [sb conf : cnf ] bdJdfK] cnf ];

• [value el cnf (nm nm.∗)] = [value el cnf (nm.∗)];

• [value el cnf ()] = und.

3.9. Satisfiable and valid elements

An element el is satisfiable in J(vr.∗), cnfK if there exists sb such that [support sb] = {vr.∗},

and [value [subst sb el] cnf ] 6= und.

An element el is valid in J(vr.∗), cnfK if [value [subst sb el] cnf ] 6= und for each sb such that

[support sb] = {vr.∗}.

3.10. Conceptual configuration systems

An object ss.c.c of the form (Atm, intr.a.s, df.s, ord.intr,mt) is called a conceptual configuration

system if intr.a.s, df.s, ord.intr and mt are an atomic element interpretation specification, element

definition specification element interpretation order and match in JAtmK, and [support intr.a.s]∩

[support df.s] = ∅. Let Ss.c.c be a set of conceptual configuration systems.

The elements of Atm, ElJAtmK, CncplJAtmK, SttJAtmK and CnfJAtmK are called atoms, ele-

ments, conceptuals, states and configurations in Jss.t.cK.

The objects intr.a.s, df.s, ord.intr and mt are called atomic element interpretation specification,

element definition specification, element interpretation order and match in Jss.c.cK.

An element el is interpretable in Jss.c.cK if there exist nm such that el is an instance in

Jpt.sJ[intr.a.s nm]K,mtK, or el is an instance in Jpt.sJ[df.s nm]K,mtK.

3.11. Conceptual information query models

An object mdl.q.i.c of the form (ss.c.c, rpr.s, rpr.q, rpr.a) is a conceptual information query model

in Jss.q.iK if rpr.s, rpr.q, rpr.a ∈ Fn, [support rpr.s] = Ob.sJss.q.iK, [image rpr.s] ⊆ ElJss.c.cK, [image

rpr.s SttJss.q.iK] ⊆ CnfJss.c.cK, [support rpr.q] = Ob.qJss.q.iK, [image rpr.q] ⊆ ElJss.c.cK, [support rpr.a]

= Ob.aJss.q.iK, [image rpr.a] ⊆ ElJss.c.cK, and [rpr.a [value qr stt]] = [value [rpr.q qr] [rpr.s stt]]. Let

Mdl.q.i.c be a set of conceptual information query models.

The system ss.c.c is called a conceptual configuration system in Jmdl.q.i.cK. The functions rpr.s,

rpr.q and rpr.a are called a state representation, query representation and answer representation

in Jmdl.q.i.cK, respectively.
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A system ss.q.i is conceptually modelled in Jss.c.cK if there exists mdl.q.i.c such that ss.c.c =

ss.c.cJmdl.q.i.cK, and mdl.q.i.c is a conceptual query model in Jss.q.iK. The set [image rpr.s] is called

an ontology in Jss.q.i,mdl.q.i.cK. It includes conceptual structures of ss.c.cJmdl.q.i.cK representing

the conceptual structure of state objects in Jss.q.iK.

Let r−pr.s, r−pr.q and r−pr.a denote the inverse functions of rpr.s, rpr.q and rpr.a in the case of their

existence.

3.12. Extensions

A system ss.q.i.1 is an extension of ss.q.i.2 if stJss.q.i.1K ⊆ stJss.q.i.2K for each st ∈ {Stt, Ob.s, Qr,

Ob.q, Ans, Ob.a, value}.

A system ss.c.c.1 is an extension of ss.c.c.2 if obJss.c.c.1K = obJss.c.c.2K for each ob ∈ {Atm,mt},

stJss.c.c.1K ⊆ stJss.c.c.2K for each st ∈ {intr.a.s, df.s}, and the following property hold:

• if nm.1 ≺Jord.intrJss.c.c.1KK nm.2, and nm.1, nm.2 ∈ ord.intrJss.c.c.2K, then nm.1 ≺Jord.intrJss.c.c.2KK

nm.2.

A CCS ln is a language of CCSs if the conceptual structures (atoms, elements, conceptuals

and so on) of ln is syntactically defined.

4. Structure of conceptuals

4.1. Elements of conceptuals

An element el is an element in Jcncpl, intK if el = [cncpl int] and el 6= und.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

10, inch, area, fg, triangle, Euclidean, 2 are elements in JcncplK in J− 3K, J− 2K, J− 1K,

J0K, J1K, J2K, J3K.

An element el is an element in JcncplK if there exists int such that el is an element in Jcncpl, intK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

10, inch, area, fg, triangle, Euclidean, 2 are elements in JcncplK.

4.2. Orders of conceptuals in the context of elements

A number int is an order in Jcncpl, elK if el = [cncpl int] and el 6= und. Let Ord be a set of

objects called orders.
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⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2).

Then −3, −2, −1, 0, 1, 2, 3 are orders in JcncplK in J10K, JinchK, JareaK, JfgK, JtriangleK,

JEuclideanK, J3K.

A number int is an order in Jcncpl, element :K if there exists el such that int is an order in

Jcncpl, elK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

−3, −2, −1, 0, 1, 2, 3 are orders in Jcncpl, element :K.

4.3. Properties of elements of conceptuals

Proposition 1. The element und is not an element in JcncplK.

Proof. This follows from the definition of element in JcncplK. 2

Proposition 2. The number of elements in JcncplK is finite.

Proof. This follows from the fact that [support cncpl] is finite and und is not an element in

JcncplK. 2

4.4. Properties of orders of conceptuals in the context of elements

Proposition 3. The number of orders in Jcncpl, elJcncplKK is finite.

Proof. This follows from the fact that [support cncpl] is finite and und is not an element in

JcncplK. 2

Proposition 4. The number of orders in Jcncpl, element :K is finite.

Proof. This follows from the fact that [support cncpl] is finite. 2

4.5. Kinds of orders of conceptuals in the context of elements

An order ordJcncpl, elK is minimal in Jcncpl, elK if int is not an order in Jcncpl, elK for each int

such that int < ord.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

−2 is a minimal order in Jcncpl, inchK.

An order ordJcncplK is minimal in Jcncpl, element :K if int is not an order in Jcncpl, êlK for each

int such that int < ord.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

−3 is a minimal order in Jcncpl, element :K.
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An order ordJcncpl, elK is maximal in Jcncpl, elK if int is not an order in Jcncpl, elK for each int

such that ord < int.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 10). Then

2 is a maximal order in Jcncpl, EuclideanK.

An order ordJcncplK is maximal in Jcncpl, element :K if int is not an order in Jcncpl, êlK for each

int such that ord < int.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then 3

is a maximal order in Jcncpl, element :K.

4.6. Kinds of elements of conceptuals

An element el is minimal in JcncplK if there exists ordJcncpl, elK such that ord is minimal in

Jcncpl, element :K.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

10 is a minimal element in JcncplK.

An element el is maximal in JcncplK if there exists ordJcncpl, elK such that ord is a maximal

order in Jcncpl, element :K.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then 2

is a maximal element in JcncplK.

An element el is null in JcncplK if el is an element in Jcncpl, 0K.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2). Then

fg is null in JcncplK.

5. Structure of conceptual states

5.1. Conceptuals

A conceptual cncpl is a conceptual in JsttK if [value cncpl stt] 6= und.

A conceptual cncpl.n is a conceptual in JcnfK if cncplJcncpl.nK is a conceptual in J[cnf nm

Jcncpl.nK]K. A conceptual cncpl is a conceptual in JcnfK if there exists nm such that cncpl ::

state :: nm is a conceptual in JcnfK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

[support stt] = {cncpl}. Then cncpl is a conceptual in JsttK.
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5.2. Elements, orders, concretizations

An element el is an element in Jstt, int, cncplK if cncpl is a conceptual in JsttK and el is an

element in Jcncpl, intK. An element el is an element in Jcnf , int, cncpl.nK if el is an element in

J[cnf [name in cncpl.n]], int, [conceptual in cncpl.n]K.

A number int is an order in Jel, stt, cncplK if el is an element in Jstt, int, cncplK. A number int

is an order in Jel, cnf , cncpl.nK if el is an element in Jcnf , int, cncpl.nK.

A conceptual cncpl is a concretization in Jel, stt, intK if el is an element in Jstt, int, cncplK. A

conceptual cncpl.n is a concretization in Jel, cnf , intK if el is an element in Jcnf , int, cncpl.nK.

5.3. Kinds of elements

An element el is an element in Jstt, intK if there exists cncpl such that el is an element in

Jstt, int, cncplK. An element el is an element in Jcnf , intK if there exists cncpl.n such that el is an

element in Jcnf , int, cncpl.nK.

An element el is an element in Jstt, cncplK if there exists int such that el is an element in

Jstt, int, cncplK. An element el is an element in Jcnf , cncpl.nK if there exists int such that el is an

element in Jcnf , int, cncpl.nK.

An element el is an element in JsttK if there exists int such that el is an element in Jstt, intK.

An element el is an element in JcnfK if there exists int such that el is an element in Jcnf , intK.

5.4. Kinds of orders

A number int is an order in Jel, sttK if el is an element in Jstt, intK. A number int is an order

in Jel, cnfK if el is an element in Jcnf , intK.

A number int is an order in Jstt, element :K if there exists el such that int is an order in

Jel, sttK. A number int is an order in Jcnf , element :K if there exists el such that int is an order

in Jel, cnfK.

5.5. Kinds of concretizations

A conceptual cncpl is a concretization in Jel, sttK if el is an element in Jstt, cncplK. A conceptual

cncpl.n is a concretization in Jel, cnfK if el is an element in Jcnf , cncpl.nK.

A conceptual cncpl is a concretization in Jstt, element :K if there exists el such that cncpl is

a concretization in Jel, sttK. A conceptual cncpl.n is a concretization in Jcnf , element :K if there

exists el such that cncpl.n is a concretization in Jel, cnfK.
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5.6. Example⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– 10, 8, inch, cm, area, volume, el.g.1, el.g.2, trianle, cube, Euclidean, Lobachevskian,

3, 2 are elements in JsttK;

– −3, −2, −1, 0, 1, 2, 3 are orders in Jstt, element :K;

– cncl.1, cncl.2 are concretizations in Jstt, element :K.

5.7. Properties of elements

Proposition 5. For all el and int there exist stt and cncpl such that el is an element in

Jstt, int, cncplK.

Proof. We define stt and cncpl as follows: [cncpl int] = el and [stt cncpl] 6= und. Then el is an

element in Jstt, int, cncplK. 2

6. Classification of elements of states

Elements in JsttK are subclassified into individuals, concepts and attributes.

6.1. Individuals

Individuals in JsttK model elements in Jss.q.iK.

An element el is an individual in Jstt, cncplK if el is an element in Jstt, 0, cncplK. An element el

is an individual in Jcnf , cncpl.nK if el is an element in Jcnf , 0, cncpl.nK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

stt = (cncpl : 3). Then fg is an individual in Jstt, cncplK.

An element el is an individual in JsttK if there exists cncpl such that el is an individual in

Jstt, cncplK. An element el is an individual in JcnfK if there exists cncpl.n such that el is an

individual in Jcnf , cncpl.nK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

stt = (cncl.1 : 3, cncl.2 : 4). Then el.g.1 and el.g.2 are individuals in JsttK.

6.2. Concepts
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Concepts in JsttK generalize models of the usual concepts in Jss.q.iK which are interpreted as

sets of elements in Jss.q.iK.

An element el is a concept in Jstt, nt, cncplK if el is an element in Jstt, nt, cncplK. A number

nt is an order in Jel, stt, cncplK in Jconcept : el, stt, cncplK if el is a concept in Jstt, nt, cncplK. A

conceptual cncpl is a concretization in Jconcept : el, stt, ntK if el is a concept in Jstt, nt, cncplK.

An element el is a concept in Jcnf , nt, cncpl.nK if el is an element in Jcnf , nt, cncpl.nK. A number

nt is an order in Jel, cnf , cncpl.nK in Jconcept : el, cnf , cncpl.nK if el is a concept in Jcnf , nt, cncpl.nK. A

conceptual cncpl.n is a concretization in Jconcept : el, cnf , ntK if el is a concept in Jcnf , nt, cncpl.nK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

stt = (cncpl : 3). Then the following properties hold:

– triangle, Euclidean, 2 are concepts in JsttK in J1K, J2K, J3K in JcncplK;

– 1, 2, 3 are orders in Jconcept : triangleK, Jconcept : EuclideanK, Jconcept : 2K in JsttK

in JcncplK;

– cncpl is a concretization in Jconcept : triangleK, Jconcept : EuclideanK, Jconcept : 3K

in JsttK in J1K, J2K, J2K.

An element el is a concept in Jstt, ntK if there exists cncpl such that el is a concept in

Jstt, nt, cncplK. A number nt is an order in Jel, sttK in Jconcept : el, sttK if el is a concept in

Jstt, ntK.

An element el is a concept in Jcnf , ntK if there exists cncpl.n such that el is a concept in

Jcnf , nt, cncpl.nK. A number nt is an order in Jel, cnfK in Jconcept : el, cnfK if el is a concept in

Jcnf , ntK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

stt = (cncl.1 : 3, cncl.2 : 4). Then the following properties hold:

– triangle, Euclidean, 2 are concepts in JsttK in J1K, J2K, J2K;

– cube, Lobachevskian, 3 are concepts in JsttK in J1K, J2K, J3K;

– 1, 2, 3 are orders in Jconcept : triangleK, Jconcept : EuclideanK, Jconcept : 2K in JsttK;

– 1, 2, 3 are orders in Jconcept : cubeK, Jconcept : LobachevskianK, Jconcept : 3K in JsttK.

An element el is a concept in Jstt, cncplK if there exists nt such that el is a concept in

Jstt, nt, cncplK. A conceptual cncpl is a concretization in Jel, sttK in Jconcept : el, sttK if el is a

concept in Jstt, cncplK.

An element el is a concept in Jcnf , cncpl.nK if there exists nt such that el is a concept in
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Jcnf , nt, cncpl.nK. A conceptual cncpl.n is a concretization in Jel, cnfK in Jconcept : el, cnfK if el is

a concept in Jcnf , cncpl.nK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

stt = (cncl.1 : 3, cncl.2 : 4). Then the following properties hold:

– triangle, Euclidean, 2 are concepts in Jstt, cncl.1K;

– cube, Lobachevskian, 3 are concepts in Jstt, cncl.2K;

– cncl.1 is a concretization in Jconcept : triangleK, Jconcept : EuclideanK, Jconcept : 2K

in JsttK;

– cncl.2 is a concretization in Jconcept : cubeK, Jconcept : LobachevskianK, Jconcept : 3K

in JsttK.

An element el is a concept in JsttK if there exists nt such that el is a concept in Jstt, ntK. A

number nt is an order in JsttK in Jstt, concept :K if there exists el such that nt is an order in

Jconcept : el, sttK. A conceptual cncpl is a concretization in JsttK in Jstt, concept :K if there exists

el such that cncpl is a concretization in Jconcept : el, sttK.

An element el is a concept in JcnfK if there exists nt such that el is a concept in Jcnf , ntK.

A number nt is an order in JcnfK in Jcnf , concept :K if there exists el such that nt is an order

in Jconcept : el, cnfK. A conceptual cncpl.n is a concretization in JcnfK in Jcnf , concept :K if there

exists el such that cncpl.n is a concretization in Jconcept : el, cnfK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

stt = (cncl.1 : 3, cncl.2 : 4). Then the following properties hold:

– triangle, Euclidean, 2, cube, Lobachevskian, 3 are concepts in JsttK;

– 1, 2, 3 are orders in Jstt, concept :K;

– cncl.1, cncl.2 are concretizations in Jstt, concept :K.

6.3. Attributes

Attributes in JsttK generalize models of the usual attributes in Jss.q.iK which are interpreted

as characteristics of elements of ss.q.i.

An element el is an attribute in Jstt, nt, cncplK if el is an element in Jstt,−nt, cncplK. A number

nt is an order in Jel, stt, cncplK in Jattribute : el, stt, cncplK if el is an attribute in Jstt, nt, cncplK. A

conceptual cncpl is a concretization in Jattribute : el, stt, ntK if el is an attribute in Jstt, nt, cncplK.
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An element el is an attribute in Jcnf , nt, cncpl.nK if el is an element in Jcnf ,−nt, cncpl.nK. A

number nt is an order in Jel, cnf , cncpl.nK in Jattribute : el, cnf , cncpl.nK if el is an attribute in

Jcnf , nt, cncpl.nK. A conceptual cncpl.n is a concretization in Jattribute : el, cnf , ntK if el is an

attribute in Jcnf , nt, cncpl.nK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

stt = (cncpl : 3). Then the following properties hold:

– area, inch, 10 are attributes in JsttK in J1K, J2K, J3K in JcncplK;

– 1, 2, 3 are orders in Jattribute : areaK, Jattribute : inchK, Jattribute : 10K in JsttK in

JcncplK;

– cncpl is a concretization in Jattribute : areaK, Jattribute : inchK, Jattribute : 10K in

JsttK in J1K, J2K, J3K.

An element el is an attribute in Jstt, ntK if there exists cncpl such that el is an attribute in

Jstt, nt, cncplK. A number nt is an order in Jel, sttK in Jattribute : el, sttK if el is an attribute in

Jstt, ntK.

An element el is an attribute in Jcnf , ntK if there exists cncpl.n such that el is an attribute in

Jcnf , nt, cncpl.nK. A number nt is an order in Jel, cnfK in Jattribute : el, cnfK if el is an attribute

in Jcnf , ntK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

stt = (cncl.1 : 3, cncl.2 : 4). Then the following properties hold:

– area, inch, 10 are attributes in JsttK in J1K, J2K, J3K;

– volume, cm, 8 are attributes in JsttK in J1K, J2K, J3K;

– 1, 2, 3 are orders in Jattribute : areaK, Jattribute : inchK, Jattribute : 10K in JsttK;

– 1, 2, 3 are orders in Jattribute : volumeK, Jattribute : cmK, Jattribute : 8K in JsttK.

An element el is an attribute in Jstt, cncplK if there exists nt such that el is an attribute in

Jstt, nt, cncplK. A conceptual cncpl is a concretization in Jel, sttK in Jattribute : el, sttK if el is an

attribute in Jstt, cncplK.

An element el is an attribute in Jcnf , cncpl.nK if there exists nt such that el is an attribute in

Jcnf , nt, cncpl.nK. A conceptual cncpl.n is a concretization in Jel, cnfK in Jattribute : el, cnfK if el is

an attribute in Jcnf , cncpl.nK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and
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stt = (cncl.1 : 3, cncl.2 : 4). Then the following properties hold:

– area, inch, 10 are attributes in Jstt, cncl.1K;

– volume, cm, 8 are attributes in Jstt, cncl.2K;

– cncl.1 is a concretization in Jattribute : areaK, Jattribute : inchK, Jattribute : 10K in

JsttK;

– cncl.2 is a concretization in Jattribute : volumeK, Jattribute : cmK, Jattribute : 8K in

JsttK.

An element el is an attribute in JsttK if there exists nt such that el is an attribute in

Jstt, ntK. A number nt is an order in Jstt, attribute :K if there exists el such that nt is an

order in Jattribute : el, sttK. A conceptual cncpl is a concretization in Jstt, attribute :K if there

exists el such that cncpl is a concretization in Jattribute : el, sttK.

An element el is an attribute in JcnfK if there exists nt such that el is an attribute in

Jcnf , ntK. A number nt is an order in Jcnf , attribute :K if there exists el such that nt is an order

in Jattribute : el, cnfK. A conceptual cncpl.n is a concretization in Jcnf , attribute :K if there exists

el such that cncpl.n is a concretization in Jattribute : el, cnfK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 8,−2 : cm,−1 : volume, 0 : el.g.2, 1 : cube, 2 : Lobachevskian, 3 : 3), and

stt = (cncl.1 : 3, cncl.2 : 4). Then the following properties hold:

– area, inch, 10, volume, cm, 8 are attributes in JsttK;

– 1, 2, 3 are orders in Jstt, attribute :K;

– cncl.1, cncl.2 are concretizations in Jstt, attribute :K.

Concepts and attributes are considered in detail below.

7. Structure of concepts

7.1. Direct concepts

The usual concepts in Jss.q.iK which are interpreted as sets of elements in Jss.q.iK are modelled

by the special kind of concepts in JsttK, direct concepts in JsttK.

7.1.1. Direct concepts

An element el is a direct concept in Jstt, cncplK if el is a concept in Jstt, 1, cncplK. An element

el is a direct concept in Jcnf , cncpl.nK if el is a concept in Jcnf , 1, cncpl.nK.
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An element el is a direct concept in JsttK if there exists cncpl such that el is a direct concept

in Jstt, cncplK. An element el is a direct concept in JcnfK if there exists cncpl.n such that el is a

direct concept in Jcnf , cncpl.nK.

7.1.2. Concretizations

A conceptual cncpl is a concretization in Jdirect−concept : el, sttK if el is a concept in Jstt, 1,

cncplK. A conceptual cncpl.n is a concretization in Jdirect−concept : el, cnfK if el is a concept in

Jcnf , 1, cncpl.nK.

A conceptual cncpl is a concretization in Jstt, direct−concept :K if there exists el such that

cncpl is a concretization in Jdirect−concept : el, sttK. A conceptual cncpl.n is a concretization in

Jcnf , direct−concept :K if there exists el such that cncpl.n is a concretization in Jdirect−concept :

el, cnfK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : perimeter, 0 : fg, 1 : rectangle, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– triangle and rectangle are direct concepts in stt;

– cncl.1 is a concretization in Jdirect−concept : triangle, sttK;

– cncl.2 is a concretization in Jdirect−concept : rectangle, sttK.

7.2. Elements of concepts

7.2.1. Elements, orders, concretizations

An element el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK if cncp is a concept in Jstt, nt, cncplK, el is an element in Jcncpl, intK, and int < nt. An

element el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK

if cncp is a concept in Jcnf , nt, cncpl.nK, el is an element in Jcncpl.n, intK, and int < nt.

Thus, elements of cncp can be concepts of orders which are less than the order of cncp,

individuals and attributes of any orders.

A number nt is an order in Jel, concept : cncp, stt, element−order : int, cncplK if el is an element

in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK. It specifies the order in

Jcncpl, cncpK. A number nt is an order in Jel, concept : cncp, cnf , element−order : int, cncpl.nK if el

is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

A number int is an order in Jel, concept : cncp, stt, concept−order : nt, cncplK if el is an element
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in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK. It specifies the order in

Jcncpl, elK. A number int is an order in Jel, concept : cncp, cnf , concept−order : nt, cncpl.nK if el is

an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

A conceptual cncpl is a concretization in Jel, concept : cncp, stt, concept−order : nt, element−

order : intK if el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK. It defines that el is an element in Jconcept : cncp, stt, concept−order : nt, element−

order : intK. A conceptual cncpl.n is a concretization in Jel, concept : cncp, cnf , concept−order :

nt, element−order : intK if el is an element in Jconcept : cncp, cnf , concept−order : nt, element−

order : int, cncpl.nK.

7.2.2. Kinds of elements

An element el is an element in Jconcept : cncp, stt, concept−order : nt, element−order : intK if

there exists cncpl such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−

order : int, cncplK. An element el is an element in Jconcept : cncp, cnf , concept−order : nt,

element−order : intK if there exists cncpl.n such that el is an element in Jconcept : cncp, cnf ,

concept−order : nt, element−order : int, cncpl.nK.

An element el is an element in Jconcept : cncp, stt, concept−order : nt, cncplK if there exists int

such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK.

An element el is an element in Jconcept : cncp, cnf , concept−order : nt, cncpl.nK if there exists

int such that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order :

int, cncpl.nK.

An element el is an element in Jconcept : cncp, stt, element−order : int, cncplK if there exists nt

such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK.

An element el is an element in Jconcept : cncp, cnf , element−order : int, cncpl.nK if there exists

nt such that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order :

int, cncpl.nK.

An element el is an element in Jconcept : cncp, stt, concept−order : ntK if there exist int

and cncpl such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK. An element el is an element in Jconcept : cncp, cnf , concept−order : ntK if there exist int

and cncpl.n such that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order :

int, cncpl.nK.

An element el is an element in Jconcept : cncp, stt, element−order : intK if there exist nt and
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cncpl such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK. An element el is an element in Jconcept : cncp, cnf , element−order : intK if there exist

nt and cncpl.n such that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−

order : int, cncpl.nK.

An element el is an element in Jconcept : cncp, stt, cncplK if there exist nt and int such that el

is an element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK. An element

el is an element in Jconcept : cncp, cnf , cncpl.nK if there exist nt and int such that el is an element

in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

An element el is an element in Jconcept : cncp, sttK if there exist nt, int, and cncpl such that el

is an element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK. An element

el is an element in Jconcept : cncp, cnfK if there exist nt, int, and cncpl.n such that el is an element

in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

7.2.3. Kinds of orders in the context of concepts

A number nt is an order in Jel, concept : cncp, stt, concept−order :, cncplK if el is an element

in Jconcept : cncp, stt, concept−order : nt, cncplK. A number nt is an order in Jel, concept :

cncp, cnf , concept−order :, cncpl.nK if el is an element in Jconcept : cncp, cnf , concept−order :

nt, cncpl.nK.

A number nt is an order in Jel, concept : cncp, stt, element−order : intK if el is an element

in Jconcept : cncp, stt, concept−order : nt, element−order : intK. A number nt is an order in

Jel, concept : cncp, cnf , element−order : intK if el is an element in Jconcept : cncp, cnf , concept−

order : nt, element−order : intK.

A number nt is an order in Jel, concept : cncp, stt, concept−order : K if el is an element in

Jconcept : cncp, stt, concept−order : ntK. A number nt is an order in Jel, concept : cncp, cnf ,

concept−order : K if el is an element in Jconcept : cncp, cnf , concept−order : ntK.

7.2.4. Kinds of orders in the context of elements

A number int is an order in Jel, concept : cncp, stt, element−order :, cncplK if el is an element

in Jconcept : cncp, stt, element−order : int, cncplK. A number int is an order in Jel, concept :

cncp, cnf , element−order :, cncpl.nK if el is an element in Jconcept : cncp, cnf , element−order :

int, cncpl.nK.

A number int is an order in Jel, concept : cncp, stt, concept−order : ntK if el is an element

in Jconcept : cncp, stt, concept−order : nt, element−order : intK. A number int is an order in
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Jel, concept : cncp, cnf , concept−order : ntK if el is an element in Jconcept : cncp, cnf , concept−

order : nt, element−order : intK.

A number int is an order in Jel, concept : cncp, stt, element−order : K if el is an element in

Jconcept : cncp, stt, element−order : intK. A number int is an order in Jel, concept : cncp, cnf ,

element−order : K if el is an element in Jconcept : cncp, cnf , element−order : intK.

7.2.5. Kinds of concretizations

A conceptual cncpl is a concretization in Jel, concept : cncp, stt, concept−order : ntK if el is an

element in Jconcept : cncp, stt, concept−order : nt, cncplK. A conceptual cncpl.n is a concretization

in Jel, concept : cncp, cnf , concept−order : ntK if el is an element in Jconcept : cncp, cnf , concept−

order : nt, cncpl.nK.

A conceptual cncpl is a concretization in Jel, concept : cncp, stt, element−order : intK if el is an

element in Jconcept : cncp, stt, element−order : int, cncplK. A conceptual cncpl.n is a concretization

in Jel, concept : cncp, cnf , element−order : intK if el is an element in Jconcept : cncp, cnf , element−

order : int, cncpl.nK.

A conceptual cncpl is a concretization in Jel, concept : cncp, sttK if el is an element in Jconcept :

cncp, stt, cncplK. A conceptual cncpl.n is a concretization in Jel, concept : cncp, cnfK if el is an element

in Jconcept : cncp, cnf , cncpl.nK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 2,−2 : cm,−1 : perimeter, 0 : el.g.2, 1 : rectangle, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– 10, inch, area, el.g.1 are elements in Jconcept : triangle, sttK;

– 2, cm, perimeter, el.g.2 are elements in Jconcept : rectangle, sttK;

– 10, inch, area, el.g.1, 2, cm, perimeter, el.g.2, triangle, rectangle are elements in

Jconcept : Eucludian, sttK;

– 10, inch, area, el.g.1, 2, cm, perimeter, el.g.2, triangle, rectangle, Eucludian are

elements in Jconcept : 2, sttK;

– cncl.1 is a concretization in Jconcept : triangleK, Jconcept : EucludianK, Jconcept : 2K

in JsttK;

– cncl.2 is a concretization in Jconcept : rectangleK, Jconcept : EucludianK, Jconcept : 2K

in JsttK;

– 1 is an order in Jel.g.2, concept : rectangle, stt, concept−order :K;
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– 0 is an order in Jel.g.1, concept : triangle, stt, element−order :K;

– −1 is an order in Jarea, concept : triangle, stt, element−order :K;

– −2 is an order in Jcm, concept : Eucludian, stt, element−order :K.

7.3. The property of direct concepts

Proposition 6. If cncp is a concept in JsttK and el is an element in Jconcept : cncp, stt, concept−

order : 1K, then el is either an individual in JsttK, or el is an attribute in JsttK.

Proof. This follows from the definition of direct concepts. 2

7.4. The content of concepts

The content of a concept describes its semantics.

A set st is the content in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK if

st is the set of all elements in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK.

A set st is the content in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK

if st is the set of all elements in Jconcept : cncp, cnf , concept−order : nt, element−order :

int, cncpl.nK.

A set st is the content in Jconcept : cncp, stt, concept−order : nt, element−order : intK if st =⋃
cncplJsttK stJconcept : cncp, stt, concept−order : nt, element−order : int, cncplK. A set st is the

content in Jconcept : cncp, cnf , concept−order : nt, element−order : intK if st =
⋃

cncpl.nJcnf K st

Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

A set st is the content in Jconcept : cncp, stt, concept−order : ntK if st =
⋃

int<nt
stJconcept :

cncp, stt, concept−order : nt, element−order : intK. A set st is the content in Jconcept : cncp, cnf ,

concept−order : ntK if st =
⋃

int<nt
stJconcept : cncp, cnf , concept−order : nt, element−order :

intK.

A set st is the content in Jconcept : cncp, sttK if st =
⋃

nt
stJconcept : cncp, stt, concept−order :

ntK. A set st is the content in Jconcept : cncp, cnfK if st =
⋃

nt
stJconcept : cncp, cnf , concept−

order : ntK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 2,−2 : cm,−1 : perimeter, 0 : el.g.2, 1 : rectangle, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– {10, inch, area, el.g.1} is the content in Jconcept : triangle, sttK;

– {2, cm, perimeter, el.g.2} is the content in Jconcept : rectangle, sttK;
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– {10, inch, area, el.g.1, 2, cm, perimeter, el.g.2, triangle, rectangle} is the content in

Jconcept : Eucludian, sttK;

– {10, inch, area, el.g.1, 2, cm, perimeter, el.g.2, triangle, rectangle, Eucludian} is the

content in Jconcept : 2, sttK.

7.5. Mediators

7.5.1. Mediators, elements, degrees

An element el.1 is a mediator in Jel, concept : cncp, stt, concept−order : nt, element−order :

int, cncplK if el is an element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK,

el.1 is an element in Jcncpl, int.1K, and int < int.1 < nt. It is between el and cncp in cncpl

in the position int.1, thus separating el from cncp in cncpl. An element el.1 is a mediator

in Jel, concept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK if el is an element

in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK, el.1 is an element in

Jcncpl.n, int.1K, and int < int.1 < nt.

An element el.1 is a mediator in Jel, concept : cncp, stt, concept−order : nt, element−order :

int, cncplK if there exists int.1 such that el.1 is a mediator in Jel, concept : cncp, stt, concept−order :

nt, element−order : int, cncplK. An element el.1 is a mediator in Jel, concept : cncp, cnf , concept−

order : nt, element−order : int, cncpl.nK if there exists int.1 such that el.1 is a mediator in

Jel, concept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

An element el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncpl,mediator−degree : nat.1K if el is an element in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncplK and nat.1 is the number of orders int.1 in Jcncpl, êlK such that int <

int.1 < nt. It is separated from cncp in cncpl by nat.1 of mediators. An element el is an element

in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K

if el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK and

nat.1 is the number of orders int.1 in Jcncpl.n, êlK such that int < int.1 < nt.

A number nat.1 is a degree in Jel, concept : cncp, stt, concept−order : nt, element−order :

int, cncpl,mediator−degree : K if el is an element in Jconcept : cncp, stt, concept−order : nt,

element−order : int, cncpl,mediator−degree : nat.1K. It specifies how many mediators separate

el from cncp in cncpl. A number nat.1 is a degree in Jel, concept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.n,mediator−degree : K if el is an element in Jconcept : cncp, cnf ,

concept−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.
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7.5.2. Kinds of elements

An element el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int,mediator−degree : nat.1K if there exists cncpl such that el is an element in Jconcept :

cncp, stt, concept−order : nt, element−order : int, cncpl,mediator−degree : nat.1K. An element

el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int,mediator−

degree : nat.1K if there exists cncpl.n such that el is an element in Jconcept : cncp, cnf , concept−

order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jconcept : cncp, stt, concept−order : nt, cncpl,mediator−

degree : nat.1K if there exists int such that el is an element in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jconcept : cncp, cnf , concept−order : nt, cncpl.n,mediator−degree : nat.1K if there exists int such

that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

An element el is an element in Jconcept : cncp, stt, element−order : int, cncpl,mediator−

degree : nat.1K if there exists nt such that el is an element in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jconcept : cncp, cnf , element−order : int, cncpl.n,mediator−degree : nat.1K if there exists nt such

that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

An element el is an element in Jconcept : cncp, stt, concept−order : nt,mediator−degree :

nat.1K if there exist int and cncpl such that el is an element in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jconcept : cncp, cnf , concept−order : nt,mediator−degree : nat.1K if there exist int and cncpl.n

such that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

An element el is an element in Jconcept : cncp, stt, element−order : int,mediator−degree :

nat.1K if there exist nt and cncpl such that el is an element in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jconcept : cncp, cnf , element−order : int,mediator−degree : nat.1K if there exist nt and cncpl.n

such that el is an element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

An element el is an element in Jconcept : cncp, stt, cncpl,mediator−degree : nat.1K if there exist
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nt and int such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncpl,mediator−degree : nat.1K. An element el is an element in Jconcept : cncp, cnf , cncpl.n,

mediator−degree : nat.1K if there exist nt and int such that el is an element in Jconcept :

cncp, cnf , concept−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jconcept : cncp, stt,mediator−degree : nat.1K if there exist nt,

int, and cncpl such that el is an element in Jconcept : cncp, stt, concept−order : nt, element−

order : int, cncpl,mediator−degree : nat.1K. An element el is an element in Jconcept : cncp, cnf ,

mediator−degree : nat.1K if there exist nt, int, and cncpl.n such that el is an element in Jconcept :

cncp, cnf , concept−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

7.5.3. Kinds of degrees

A number nat.1 is a degree in Jel, concept : cncp, stt, concept−order : nt, element−order :

int,mediator−degree : K if el is an element in Jconcept : cncp, stt, concept−order : nt, element−

order : int,mediator−degree : nat.1K. A number nat.1 is a degree in Jel, concept : cncp, cnf ,

concept−order : nt, element−order : int,mediator−degree : K if el is an element in Jconcept :

cncp, cnf , concept−order : nt, element−order : int,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, concept : cncp, stt, concept−order : nt, cncpl,mediator−

degree : K if el is an element in Jconcept : cncp, stt, concept−order : nt, cncpl,mediator−degree :

nat.1K. A number nat.1 is a degree in Jel, concept : cncp, cnf , concept−order : nt, cncpl.n,mediator−

degree : K if el is an element in Jconcept : cncp, cnf , concept−order : nt, cncpl.n,mediator−degree :

nat.1K.

A number nat.1 is a degree in Jel, concept : cncp, stt, element−order : int, cncpl,mediator−

degree : K if el is an element in Jconcept : cncp, stt, element−order : int, cncpl,mediator−degree :

nat.1K. A number nat.1 is a degree in Jel, concept : cncp, cnf , element−order : int, cncpl.n,

mediator−degree : K if el is an element in Jconcept : cncp, cnf , element−order : int, cncpl.n,

mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, concept : cncp, stt, element−order : int, cncpl,mediator−

degree : K if el is an element in Jconcept : cncp, stt, cncpl,mediator−degree : nat.1K. A number

nat.1 is a degree in Jel, concept : cncp, cnf , element−order : int, cncpl.n,mediator−degree : K if el

is an element in Jconcept : cncp, cnf , cncpl.n,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, concept : cncp, stt, concept−order : nt,mediator−degree : K

if el is an element in Jconcept : cncp, stt, concept−order : nt,mediator−degree : nat.1K. A
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number nat.1 is a degree in Jel, concept : cncp, cnf , concept−order : nt,mediator−degree : K if el

is an element in Jconcept : cncp, cnf , concept−order : nt,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, concept : cncp, stt, element−order : int,mediator−degree : K

if el is an element in Jconcept : cncp, stt, element−order : int,mediator−degree : nat.1K. A

number nat.1 is a degree in Jel, concept : cncp, cnf , element−order : int,mediator−degree : K if

el is an element in Jconcept : cncp, cnf , element−order : int,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, concept : cncp, stt,mediator−degree : K if el is an element

in Jconcept : cncp, stt,mediator−degree : nat.1K. A number nat.1 is a degree in Jel, concept :

cncp, cnf ,mediator−degree : K if el is an element in Jconcept : cncp, cnf ,mediator−degree : nat.1K.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 2 : Euclidean, 3 : 2), and [support stt] =

{cncl.1, cncl.2}. Then fg is an element in the following contexts:

– Jconcept : triangle, sttK with the decree 0 and without mediators;

– Jconcept : Euclidean, sttK with the decree 1 and the mediator triangle;

– Jconcept : 2, sttK with the decree 2 and the mediators triangle and Euclidean;

– Jconcept : Euclidean, sttK with the decree 0 and without mediators;

– Jconcept : 2, sttK with the decree 1 and the mediator Euclidean.

7.6. Direct elements

An element el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK if el is an element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncpl,

mediator−degree : 0K. An element el is a direct element in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.nK if el is an element in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.n,mediator−degree : 0K.

7.6.1. Kinds of direct elements

An element el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−order :

intK if there exists cncpl such that el is a direct element in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncpl.nK. An element el is a direct element in Jconcept : cncp, cnf ,

concept−order : nt, element−order : intK if there exists cncpl such that el is a direct element in

Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jconcept : cncp, stt, concept−order : nt, cncplK if there exists

int such that el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−order :
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int, cncplK. An element el is a direct element in Jconcept : cncp, cnf , concept−order : nt, cncpl.nK

if there exists int such that el is a direct element in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.nK.

An element el is a direct element in Jconcept : cncp, stt, element−order : int, cncplK if there ex-

ists nt such that el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK. An element el is a direct element in Jconcept : cncp, cnf , element−order : int, cncpl.nK

if there exists nt such that el is a direct element in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.nK.

An element el is a direct element in Jconcept : cncp, stt, concept−order : ntK if there exist int

and cncpl such that el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−

order : int, cncplK. An element el is a direct element in Jconcept : cncp, cnf , concept−order : ntK if

there exist int and cncpl.n such that el is a direct element in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.nK.

An element el is a direct element in Jconcept : cncp, stt, element−order : intK if there exist nt

and cncpl such that el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−

order : int, cncplK. An element el is a direct element in Jconcept : cncp, cnf , element−order : intK

if there exist nt and cncpl.n such that el is a direct element in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.nK.

An element el is a direct element in Jconcept : cncp, stt, cncplK if there exist nt and int such

that el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK.

An element el is a direct element in Jconcept : cncp, cnf , cncpl.nK if there exist nt and int such that

el is a direct element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jconcept : cncp, sttK if there exist nt, int, and cncpl such

that el is a direct element in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncplK.

An element el is a direct element in Jconcept : cncp, cnfK if there exist nt, int, and cncpl.n such that

el is a direct element in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

stt = (cncpl : 3). Then the following properties hold:

– fg is a direct element in Jconcept : triangle, sttK that means that fg is a triangle in

JsttK;

– triangle is a direct element in Jconcept : Eucludian, sttK that means that classification

of geometric figures in Eucludian space includes triangles in JsttK;
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– Eucludian is a direct element in Jconcept : 2, sttK that means that classification of

two-dimensional spaces includes Eucludian space in JsttK.

7.7. The direct content of concepts

A set st is the direct content in Jconcept : cncp, stt, concept−order : nt, element−order :

int, cncplK if st is the set of all direct elements in Jconcept : cncp, stt, concept−order : nt, element−

order : int, cncplK. A set st is the direct content in Jconcept : cncp, cnf , concept−order :

nt, element−order : int, cncpl.nK if st is the set of all direct elements in Jconcept : cncp, cnf ,

concept−order : nt, element−order : int, cncpl.nK.

A set st is the direct content in Jconcept : cncp, stt, concept−order : nt, element−order : intK

if st =
⋃

cncplJsttK stJconcept : cncp, stt, concept−order : nt, element−order : int, cncplK. A set

st is the direct content in Jconcept : cncp, cnf , concept−order : nt, element−order : intK if

st =
⋃

cncpl.nJcnf K stJconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.nK.

A set st is the direct content in Jconcept : cncp, stt, concept−order : ntK if st =
⋃

int<nt
stJ

concept : cncp, stt, concept−order : nt, element−order : intK. A set st is the direct content in

Jconcept : cncp, cnf , concept−order : ntK if st =
⋃

int<nt
stJconcept : cncp, cnf , concept−order :

nt, element−order : intK.

A set st is the direct content in Jconcept : cncp, sttK if st =
⋃

nt
stJconcept : cncp, stt, concept−

order : ntK. A set st is the direct content in Jconcept : cncp, cnfK if st =
⋃

nt
stJconcept :

cncp, cnf , concept−order : ntK.

⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.2, 1 : triangle, 2 : Riemannian, 3 : 2),

cncl.3 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 3 : 2), and [support stt] = {cncl.1, cncl.2,

cncl.3}. Then the following properties hold:

– {el.g.1, el.g.2} is the direct content in Jconcept : triangle, sttK;

– {triangle} is the direct content in Jconcept : Eucludian, sttK;

– {triangle} is the direct content in Jconcept : Riemannian, sttK;

– {Eucludian,Riemannian} is the direct content in Jconcept : 2, sttK;

– {el.g.1} is the direct content in Jconcept : 2, sttK.

7.8. The content of concepts in the context of mediators
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A set st is the content in Jconcept : cncp, stt, concept−order : nt, element−order : int, cncpl,

mediator−degree : nat.1K if st is the set of all elements in Jconcept : cncp, stt, concept−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. A set st is the content in Jconcept :

cncp, cnf , concept−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K if st is the

set of all elements in Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

A set st is the content in Jconcept : cncp, stt, concept−order : nt, element−order : int,

mediator−degree : nat.1K if st =
⋃

cncplJsttK stJconcept : cncp, stt, concept−order : nt, element−

order : int, cncpl,mediator−degree : nat.1K. A set st is the content in Jconcept : cncp, cnf ,

concept−order : nt, element−order : int,mediator−degree : nat.1K if st =
⋃

cncpl.nJcnf K st

Jconcept : cncp, cnf , concept−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

A set st is the content in Jconcept : cncp, stt, concept−order : nt,mediator−degree : nat.1K if

st =
⋃

int<nt
stJconcept : cncp, stt, concept−order : nt, element−order : int,mediator−degree :

nat.1K. A set st is the content in Jconcept : cncp, cnf , concept−order : nt,mediator−degree :

nat.1K if st =
⋃

int<nt
stJconcept : cncp, cnf , concept−order : nt, element−order : int,mediator−

degree : nat.1K.

A set st is the content in Jconcept : cncp, stt,mediator−degree : nat.1K if st =
⋃

nt
stJconcept :

cncp, stt, concept−order : int,mediator−degree : nat.1K. A set st is the content in Jconcept :

cncp, cnf ,mediator−degree : nat.1K if st =
⋃

nt
stJconcept : cncp, cnf , concept−order : int,

mediator−degree : nat.1K.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 :

2), cncl.2 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.2, 1 : triangle, 2 : Riemannian, 3 :

2), cncl.3 = (−3 : 10,−2 : inch,−1 : perimeter, 0 : el.g.3, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2, cncl.3}. Then the following properties hold:

– {el.g.1, el.g.2} is the content in Jconcept : 2, stt,mediator−degree : 2K;

– {el.g.3} is the content in Jconcept : 2, stt,mediator−degree : 1K;

– {area} is the content in Jconcept : 2, stt,mediator−degree : 3K;

– {perimeter} is the content in Jconcept : 2, stt,mediator−degree : 2K.

8. Classification and interpretation of concepts

Concepts are classified according to their orders.

8.1. Concepts of the order 1
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A concept cncp in Jstt, 1K models a usual concept in Jss.q.iK. Elements in Jconcept : cncp, stt,

concept−order : 1 are attributes and individuals in JsttKK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 2,−2 : cm,−1 : perimeter, 0 : el.g.2, 1 : triangle, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– the direct concept triangle models triangles in JsttK;

– the individuals el.g.1 and el.g.2 are elements of the order 0 of the direct concept triangle

in JsttK that means that el.g.1 and el.g.2 are triangles in JsttK;

– the attributes area and perimeter are elements of the order −1 of the direct concept

triangle in JsttK that means that classification of numerical characteristics of triangles

includes area and perimeter in JsttK;

– the attributes inch and cm are elements of the order −2 of the direct concept triangle

in JsttK that means that classification of units of measurement of numerical charac-

teristics of triangles includes inches and centimetres in JsttK;

– the attributes 10 and 2 are elements of the order −3 of the direct concept triangle

in JsttK that means that classification of numeral systems for representing values of

numerical characteristics of triangles includes decimal and binary systems in JsttK.

8.2. Concepts of the order 2

A concept cncp in Jstt, 2K models a concept space in Jss.q.iK. Elements in Jconcept : cncp, stt,

concept−order : 2 are attributes, individuals and direct concepts in JsttKK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 2,−2 : cm,−1 : perimeter, 0 : el.g.2, 1 : square, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– the concept space Euclidean models Euclidean space in JsttK;

– the direct concepts triangle and square are elements of the order 1 of the concept

space Euclidean in JsttK that means that classification of geometric figures in Eu-

clidean space includes triangles and squares in JsttK;

– the individuals el.g.1 and el.g.2 are elements of the order 0 of the concept space

Euclidean in JsttK that means that el.g.1 and el.g.2 are geometric figures in Euclidean

space in JsttK;

– the attributes area and perimeter are elements of the order −1 of the concept space
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Euclidean in JsttK that means that classification of numerical characteristics of geo-

metric figures in Euclidean space includes area and perimeter in JsttK;

– the attributes inch and cm are elements of the order −2 of the concept space

Euclidean in JsttK that means that classification of units of measurement of nu-

merical characteristics of geometric figures in Euclidean space includes inches and

centimetres in JsttK;

– the attributes 10 and 2 are elements of the order −3 of the concept space Euclidean

in JsttK that means that classification of numeral systems for representing values of

numerical characteristics of geometric figures in Euclidean space includes decimal and

binary systems in JsttK.

8.3. Concepts of the order 3

A concept cncp in Jstt, 3K models a space of concept spaces in Jss.q.iK. Elements in Jconcept :

cncp, stt, concept−order : 3K are attributes, individuals, direct concepts and concept spaces in

JsttK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 2,−2 : cm,−1 : perimeter, 0 : el.g.2, 1 : square, 2 : Riemannian, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– the concept space space 2 models two-dimensional space in JsttK;

– the concept spaces Euclidean and Riemannian are elements of the order 2 of the

concept space space 2 in JsttK that means that classification of two-dimensional spaces

includes Euclidean space and Riemannian space in JsttK;

– the direct concepts triangle and square are elements of the order 1 of the concept

space space 2 in JsttK that means that classification of geometric figures in two-

dimensional space includes triangles and squares in JsttK;

– the individuals el.g.1 and el.g.2 are elements of the order 0 of the concept space space 2

in JsttK that means that el.g.1 and el.g.2 are geometric figures in two-dimensional space

in JsttK;

– the attributes area and perimeter are elements of the order −1 of the concept space

space 2 in JsttK that means that classification of numerical characteristics of geometric

figures in two-dimensional space includes area and perimeter in JsttK;

– the attributes inch and cm are elements of the order −2 of the concept space space 2



104 Anureev I.S. Formalisms for conceptual design of closed information systems

in JsttK that means that classification of units of measurement of numerical character-

istics of geometric figures in two-dimensional space includes inches and centimetres

in JsttK;

– the attributes 10 and 2 are elements of the order −3 of the concept space space

2 in JsttK that means that classification of numeral systems for representing values

of numerical characteristics of geometric figures in two-dimensional space includes

decimal and binary systems in JsttK.

8.4. Concepts of higher orders

A concept cncp in Jstt, ntK, where nt > 3, is classified and interpreted in the similar way (by

the introduction of the space of concept space spaces and so on.).

9. Structure of attributes

Attributes use the same terminology as concepts.

9.1. Direct attributes

The usual attributes in Jss.q.iK which are interpreted as characteristics of elements in Jss.q.iK

are modelled by the special kind of attributes in JsttK, direct attributes in JsttK.

9.1.1. Direct concepts

An element el is a direct attribute in Jstt, cncplK if el is a attribute in Jstt, 1, cncplK. An element

el is a direct attribute in Jcnf , cncpl.nK if el is a attribute in Jcnf , 1, cncpl.nK.

An element el is a direct attribute in JsttK if there exists cncpl such that el is a direct attribute

in Jstt, cncplK. An element el is a direct attribute in JcnfK if there exists cncpl.n such that el is a

direct attribute in Jcnf , cncpl.nK.

9.1.2. Concretizations

A conceptual cncpl is a concretization in Jdirect−attribute : el, sttK if el is a attribute in

Jstt, 1, cncplK. A conceptual cncpl.n is a concretization in Jdirect−attribute : el, cnfK if el is a

attribute in Jcnf , 1, cncpl.nK.

A conceptual cncpl is a concretization in Jstt, direct−attribute :K if there exists el such that

cncpl is a concretization in Jdirect−attribute : el, sttK. A conceptual cncpl.n is a concretization

in Jcnf , direct−attribute :K if there exists el such that cncpl.n is a concretization in Jdirect−
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attribute : el, cnfK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : perimeter, 0 : fg, 1 : rectangle, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– area and perimeter are direct attributes in stt;

– cncl.1 is a concretization in Jdirect−attribute : area, sttK;

– cncl.2 is a concretization in Jdirect−attribute : perimeter, sttK.

9.2. Elements of attributes

9.2.1. Elements, orders, concretizations

An element el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK if att is an attibute in Jstt, nt, cncplK, el is an element in Jcncpl, intK, and −nt < int. An

element el is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK

if att is an attibute in Jcnf , nt, cncpl.nK, el is an element in Jcncpl.n, intK, and −nt < int.

Thus, elements of the attribute att can be attributes of orders which are less than the order

of att, individuals and concepts of all orders.

A number nt is an order in Jel, attribute : att, stt, element−order : int, cncplK if el is an element

in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK. It specifies the order in

Jcncpl, attK. A number nt is an order in Jel, attribute : att, cnf , element−order : int, cncpl.nK if el

is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

A number int is an order in Jel, attribute : att, stt, attribute−order : nt, cncplK if el is an ele-

ment in

Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK. It specifies the order in

Jcncpl, elK. A number int is an order in Jel, attribute : att, cnf , attribute−order : nt, cncpl.nK if el

is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

A conceptual cncpl is a concretization in Jel, attribute : att, stt, attribute−order : nt, element−

order : intK if el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK. It defines that el is an element in Jattribute : att, stt, attribute−order : nt, element−

order : intK. A conceptual cncpl.n is a concretization in Jel, attribute : att, cnf , attribute−order :

nt, element−order : intK if el is an element in Jattribute : att, cnf , attribute−order : nt,

element−order : int, cncpl.nK.

9.2.2. Kinds of elements
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An element el is an element in Jattribute : att, stt, attribute−order : nt, element−order : intK

if there exists cncpl such that el is an element in Jattribute : att, stt, attribute−order : nt,

element−order : int, cncplK. An element el is an element in Jattribute : att, cnf , attribute−order :

nt, element−order : intK if there exists cncpl.n such that el is an element in Jattribute : att, cnf ,

attribute−order : nt, element−order : int, cncpl.nK.

An element el is an element in Jattribute : att, stt, attribute−order : nt, cncplK if there exists int

such that el is an element in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK.

An element el is an element in Jattribute : att, cnf , attribute−order : nt, cncpl.nK if there exists

int such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−order :

int, cncpl.nK.

An element el is an element in Jattribute : att, stt, attribute−order : int, cncplK if there exists nt

such that el is an element in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK.

An element el is an element in Jattribute : att, cnf , attribute−order : int, cncpl.nK if there exists

nt such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−order :

int, cncpl.nK.

An element el is an element in Jattribute : att, stt, attribute−order : ntK if there exist int and

cncpl such that el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK. An element el is an element in Jattribute : att, cnf , attribute−order : ntK if there exist

int and cncpl.n such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−

order : int, cncpl.nK.

An element el is an element in Jattribute : att, stt, element−order : intK if there exist nt and

cncpl such that el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK. An element el is an element in Jattribute : att, cnf , element−order : intK if there exist

nt and cncpl.n such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−

order : int, cncpl.nK.

An element el is an element in Jattribute : att, stt, cncplK if there exist nt and int such that el is

an element in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK. An element

el is an element in Jattribute : att, cnf , cncpl.nK if there exist nt and int such that el is an element

in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

An element el is an element in Jattribute : att, sttK if there exist nt, int, and cncpl such that el is

an element in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK. An element

el is an element in Jattribute : att, cnfK if there exist nt, int, and cncpl.n such that el is an element
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in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

9.2.3. Kinds of orders in the context of attributes

A number nt is an order in Jel, attribute : att, stt, attribute−order :, cncplK if el is an element

in Jattribute : att, stt, attribute−order : nt, cncplK. A number nt is an order in Jel, attribute :

att, cnf , attribute−order :, cncpl.nK if el is an element in Jattribute : att, cnf , attribute−order :

nt, cncpl.nK.

A number nt is an order in Jel, attribute : att, stt, element−order : intK if el is an element

in Jattribute : att, stt, attribute−order : nt, element−order : intK. A number nt is an order in

Jel, attribute : att, cnf , element−order : intK if el is an element in Jattribute : att, cnf , attribute−

order : nt, element−order : intK.

A number nt is an order in Jel, attribute : att, stt, attribute−order : K if el is an element

in Jattribute : att, stt, attribute−order : ntK. A number nt is an order in Jel, attribute :

att, cnf , attribute−order : K if el is an element in Jattribute : att, cnf , attribute−order : ntK.

9.2.4. Kinds of orders in the context of elements

A number int is an order in Jel, attribute : att, stt, element−order :, cncplK if el is an element

in Jattribute : att, stt, element−order : int, cncplK. A number int is an order in Jel, attribute :

att, cnf , element−order :, cncpl.nK if el is an element in Jattribute : att, cnf , element−order :

int, cncpl.nK.

A number int is an order in Jel, attribute : att, stt, attribute−order : ntK if el is an element

in Jattribute : att, stt, attribute−order : nt, element−order : intK. A number int is an order in

Jel, attribute : att, cnf , attribute−order : ntK if el is an element in Jattribute : att, cnf , attribute−

order : nt, element−order : intK.

A number int is an order in Jel, attribute : att, stt, element−order : K if el is an element

in Jattribute : att, stt, element−order : intK. A number int is an order in Jel, attribute :

att, cnf , element−order : K if el is an element in Jattribute : att, cnf , element−order : intK.

9.2.5. Kinds of concretizations

A conceptual cncpl is a concretization in Jel, attribute : att, stt, attribute−order : ntK if el is

an element in Jattribute : att, stt, attribute−order : nt, cncplK. A conceptual cncpl.n is a con-

cretization in Jel, attribute : att, cnf , attribute−order : ntK if el is an element in Jattribute :

att, cnf , attribute−order : nt, cncpl.nK.
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A conceptual cncpl is a concretization in Jel, attribute : att, stt, element−order : intK if el is

an element in Jattribute : att, stt, element−order : int, cncplK. A conceptual cncpl.n is a con-

cretization in Jel, attribute : att, cnf , element−order : intK if el is an element in Jattribute :

att, cnf , element−order : int, cncpl.nK.

A conceptual cncpl is a concretization in Jel, attribute : att, sttK if el is an element in Jattribute :

att, stt, cncplK. A conceptual cncpl.n is a concretization in Jel, attribute : att, cnfK if el is an element

in Jattribute : att, cnf , cncpl.nK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : volume, 0 : el.g.2, 1 : pyramid, 2 : Riemannian, 3 : 3),

and [support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– 2, Euclidean, triangle, el.g.1 are elements in Jattribute : area, sttK;

– 3, Riemannian, pyramid, el.g.2 are elements in Jattribute : volume, sttK;

– 2, Euclidean, triangle, el.g.1, 3, Riemannian, pyramid, el.g.2, area, volume are ele-

ments in Jattribute : inch, sttK;

– 2, Euclidean, triangle, el.g.1, 3, Riemannian, pyramid, el.g.2, area, volume, inch are

elements in Jattribute : 10, sttK;

– cncl.1 is a concretization in Jattribute : areaK, Jattribute : inchK, Jattribute : 10K in

JsttK;

– cncl.2 is a concretization in Jattribute : volumeK, Jattribute : inchK, Jattribute : 10K in

JsttK;

– 1 is an order in Jel.g.2, attribute : volume, stt, attribute−order :K;

– 0 is an order in Jel.g.1, attribute : area, stt, element−order :K;

– 1 is an order in Jtriangle, attribute : area, stt, element−order :K;

– 2 is an order in JEucludian, attribute : inch, stt, element−order :K.

9.3. The property of direct attributes

Proposition 7. If att is an attribute in JsttK and el is an element in Jattribute : att, stt,

attribute−order : 1K, then el is either an individual or el is a concept in JsttK.

Proof. This follows from the definition of direct attributes. 2

9.4. The content of attributes

The content of a attributes describes its semantics.
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A set st is the content in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK

if st is the set of all elements in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK. A set st is the content in Jattribute : att, cnf , attribute−order : nt, element−order :

int, cncpl.nK if st is the set of all elements in Jattribute : att, cnf , attribute−order : nt, element−

order : int, cncpl.nK.

A set st is the content in Jattribute : att, stt, attribute−order : nt, element−order : intK if st =⋃
cncplJsttK stJattribute : att, stt, attribute−order : nt, element−order : int, cncplK. A set st is the

content in Jattribute : att, cnf , attribute−order : nt, element−order : intK if st =
⋃

cncpl.nJcnf K st

Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

A set st is the content in Jattribute : att, stt, attribute−order : ntK if st =
⋃
−nt<int

stJ

attribute : att, stt, attribute−order : nt, element−order : intK. A set st is the content in

Jattribute : att, cnf , attribute−order : ntK if st =
⋃
−nt<int

stJattribute : att, cnf , attribute−

order : nt, element−order : intK.

A set st is the content in Jattribute : att, sttK if st =
⋃

nt
stJattribute : att, stt, attribute−

order : ntK. A set st is the content in Jattribute : att, cnfK if st =
⋃

nt
stJattribute : att, cnf ,

attribute−order : ntK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : volume, 0 : el.g.2, 1 : pyramid, 2 : Riemannian, 3 : 3),

and [support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– {2, Euclidean, triangle, el.g.1} is the content in Jattribute : area, sttK;

– {3, Riemannian, pyramid, el.g.2} is the content in Jattribute : volume, sttK;

– {2, Euclidean, triangle, el.g.1, 3, Riemannian, pyramid, el.g.2, area, volume} is the

content in Jattribute : inch, sttK;

– {2, Euclidean, triangle, el.g.1, 3, Riemannian, pyramid, el.g.2, area, volume, inch} is

the content in Jconcept : 10, sttK.

9.5. Mediators

9.5.1. Mediators, elements, degrees

An element el.1 is a mediator in Jel, attribute : att, stt, attribute−order : nt, element−order :

int, cncpl, int.1K if el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK, el.1 is an element in Jcncpl, int.1K, and −nt < int.1 < int. It is between att and el in

cncpl in the position int.1, thus separating el from att in cncpl. An element el.1 is a mediator in
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Jel, attribute : att, cnf , attribute−order : nt, element−order : int, cncpl.n, int.1K if el is an element

in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK, el.1 is an element in

Jcncpl.n, int.1K, and −nt < int.1 < int.

An element el.1 is a mediator in Jel, attribute : att, stt, attribute−order : nt, element−order :

int, cncplK if there exists int.1 such that el.1 is a mediator in Jel, attribute : att, stt, attribute−

order : nt, element−order : int, cncpl, int.1K. An element el.1 is a mediator in Jel, attribute :

att, cnf , attribute−order : nt, element−order : int, cncpl.nK if there exists int.1 such that el.1 is a

mediator in Jel, attribute : att, cnf , attribute−order : nt, element−order : int, cncpl.n, int.1K.

An element el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncpl,mediator−degree : nat.1K if el is an element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncplK and nat.1 is the number of orders int.1 in Jcncpl, êlK such that −nt <

int.1 < int. It is separated from att in cncpl by nat.1 of mediators. An element el is an element in

Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K

if el is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK and

nat.1 is the number of orders int.1 in Jcncpl.n, êlK such that −nt < int.1 < int.

A number nat.1 is a degree in Jel, attribute : att, stt, attribute−order : nt, element−order :

int, cncpl,mediator−degree : K if el is an element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. It specifies how many mediators sepa-

rate el from att in cncpl. A number nat.1 is a degree in Jel, attribute : att, cnf , attribute−order :

nt, element−order : int, cncpl.n,mediator−degree : K if el is an element in Jattribute : att, cnf ,

attribute−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

9.5.2. Kinds of elements

An element el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int,mediator−degree : nat.1K if there exists cncpl such that el is an element in Jattribute :

att, stt, attribute−order : nt, element−order : int, cncpl,mediator−degree : nat.1K. An element

el is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int,mediator−

degree : nat.1K if there exists cncpl.n such that el is an element in Jattribute : att, cnf , attribute−

order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jattribute : att, stt, attribute−order : nt, cncpl,mediator−

degree : nat.1K if there exists int such that el is an element in Jattribute : att, stt, attribute−

order : nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element
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in Jattribute : att, cnf , attribute−order : nt, cncpl.n,mediator−degree : nat.1K if there exists

int such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−order :

int, cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jattribute : att, stt, element−order : int, cncpl,mediator−

degree : nat.1K if there exists nt such that el is an element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jattribute : att, cnf , element−order : int, cncpl.n,mediator−degree : nat.1K if there exists nt such

that el is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

An element el is an element in Jattribute : att, stt, attribute−order : nt,mediator−degree :

nat.1K if there exist int and cncpl such that el is an element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jattribute : att, cnf , attribute−order : nt,mediator−degree : nat.1K if there exist int and cncpl.n

such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int,

cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jattribute : att, stt, element−order : int,mediator−degree :

nat.1K if there exist nt and cncpl such that el is an element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. An element el is an element in

Jattribute : att, cnf , element−order : int,mediator−degree : nat.1K if there exist nt and cncpl.n

such that el is an element in Jattribute : att, cnf , attribute−order : nt, element−order : int,

cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jattribute : att, stt, cncpl,mediator−degree : nat.1K if there exist

nt and int such that el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncpl,mediator−degree : nat.1K. An element el is an element in Jattribute : att, cnf , cncpl.n,

mediator−degree : nat.1K if there exist nt and int such that el is an element in Jattribute :

att, cnf , attribute−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

An element el is an element in Jattribute : att, stt,mediator−degree : nat.1K if there exist nt,

int, and cncpl such that el is an element in Jattribute : att, stt, attribute−order : nt, element−

order : int, cncpl,mediator−degree : nat.1K. An element el is an element in Jattribute : att, cnf ,

mediator−degree : nat.1K if there exist nt, int, and cncpl.n such that el is an element in Jattribute :

att, cnf , attribute−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

9.5.3. Kinds of degrees



112 Anureev I.S. Formalisms for conceptual design of closed information systems

A number nat.1 is a degree in Jel, attribute : att, stt, attribute−order : nt, element−order :

int,mediator−degree : K if el is an element in Jattribute : att, stt, attribute−order : nt, element−

order : int,mediator−degree : nat.1K. A number nat.1 is a degree in Jel, attribute : att, cnf ,

attribute−order : nt, element−order : int,mediator−degree : K if el is an element in Jattribute :

att, cnf , attribute−order : nt, element−order : int,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, attribute : att, stt, attribute−order : nt, cncpl,mediator−

degree : K if el is an element in Jattribute : att, stt, attribute−order : nt, cncpl,mediator−degree :

nat.1K. A number nat.1 is a degree in Jel, attribute : att, cnf , attribute−order : nt, cncpl.n,

mediator−degree : K if el is an element in Jattribute : att, cnf , attribute−order : nt, cncpl.n,

mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, attribute : att, stt, element−order : int, cncpl,mediator−

degree : K if el is an element in Jattribute : att, stt, element−order : int, cncpl,mediator−degree :

nat.1K. A number nat.1 is a degree in Jel, attribute : att, cnf , element−order : int, cncpl.n,

mediator−degree : K if el is an element in Jattribute : att, cnf , element−order : int, cncpl.n,

mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, attribute : att, stt, element−order : int, cncpl,mediator−

degree : K if el is an element in Jattribute : att, stt, cncpl,mediator−degree : nat.1K. A number

nat.1 is a degree in Jel, attribute : att, cnf , element−order : int, cncpl.n,mediator−degree : K if el

is an element in Jattribute : att, cnf , cncpl.n,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, attribute : att, stt, attribute−order : nt,mediator−degree : K

if el is an element in Jattribute : att, stt, attribute−order : nt,mediator−degree : nat.1K. A

number nat.1 is a degree in Jel, attribute : att, cnf , attribute−order : nt,mediator−degree : K if

el is an element in Jattribute : att, cnf , attribute−order : nt,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, attribute : att, stt, element−order : int,mediator−degree : K

if el is an element in Jattribute : att, stt, element−order : int,mediator−degree : nat.1K. A

number nat.1 is a degree in Jel, attribute : att, cnf , element−order : int,mediator−degree : K if

el is an element in Jattribute : att, cnf , element−order : int,mediator−degree : nat.1K.

A number nat.1 is a degree in Jel, attribute : att, stt,mediator−degree : K if el is an element

in Jattribute : att, stt,mediator−degree : nat.1K. A number nat.1 is a degree in Jel, attribute :

att, cnf ,mediator−degree : K if el is an element in Jattribute : att, cnf ,mediator−degree : nat.1K.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : cm, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2), and [support stt] =
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{cncl.1, cncl.2}. Then fg is an element in the following contexts:

– Jattribute : area, sttK with the decree 0 and without mediators;

– Jattribute : inch, sttK with the decree 1 and the mediator area;

– Jattribute : 10, sttK with the decree 2 and the mediators area and inch;

– Jattribute : cm, sttK with the decree 0 and without mediators;

– Jattribute : 10, sttK with the decree 1 and the mediator cm.

9.6. Direct elements

An element el is a direct element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK if el is an element in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncpl,mediator−degree : 0K. An element el is a direct element in Jattribute : att, cnf ,

attribute−order : nt, element−order : int, cncpl.nK if el is an element in Jattribute : att, cnf ,

attribute−order : nt, element−order : int, cncpl.n,mediator−degree : 0K.

9.6.1. Kinds of direct elements

An element el is a direct element in Jattribute : att, stt, attribute−order : nt, element−order :

intK if there exists cncpl such that el is a direct element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncplK. An element el is a direct element in Jattribute : att, cnf ,

attribute−order : nt, element−order : intK if there exists cncpl.n such that el is a direct ele-

ment in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jattribute : att, stt, attribute−order : nt, cncplK if there

exists int such that el is a direct element in Jattribute : att, stt, attribute−order : nt, element−

order : int, cncplK. An element el is a direct element in Jattribute : att, cnf , attribute−order :

nt, cncpl.nK if there exists int such that el is a direct element in Jattribute : att, cnf , attribute−

order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jattribute : att, stt, element−order : int, cncplK if there

exists nt such that el is a direct element in Jattribute : att, stt, attribute−order : nt, element−

order : int, cncplK. An element el is a direct element in Jattribute : att, cnf , element−order :

int, cncpl.nK if there exists nt such that el is a direct element in Jattribute : att, cnf , attribute−

order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jattribute : att, stt, attribute−order : ntK if there ex-

ist int and cncpl such that el is a direct element in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncplK. An element el is a direct element in Jattribute : att, cnf ,
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attribute−order : ntK if there exist int and cncpl.n such that el is a direct element in Jattribute :

att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jattribute : att, stt, element−order : intK if there exist nt

and cncpl such that el is a direct element in Jattribute : att, stt, attribute−order : nt, element−

order : int, cncplK. An element el is a direct element in Jattribute : att, cnf , element−order : intK if

there exist nt and cncpl.n such that el is a direct element in Jattribute : att, cnf , attribute−order :

nt, element−order : int, cncpl.nK.

An element el is a direct element in Jattribute : att, stt, cncplK if there exist nt and int such that

el is a direct element in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK. An

element el is a direct element in Jattribute : att, cnf , cncpl.nK if there exist nt and int such that el

is a direct element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

An element el is a direct element in Jattribute : att, sttK if there exist nt, int, and cncpl such that

el is a direct element in Jattribute : att, stt, attribute−order : nt, element−order : int, cncplK. An

element el is a direct element in Jattribute : att, cnfK if there exist nt, int, and cncpl.n such that

el is a direct element in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) and

stt = (cncpl : 3). Then the following properties hold:

– fg is a direct element in Jattribute : area, sttK that means that classification of nu-

merical characteristics of fg includes area in JsttK;

– area is a direct element in Jattribute : inch, sttK that means that classification of units

of measurement of numerical characteristics of geometric figures includes inches in

JsttK;

– inch is a direct element in Jattribute : 10, sttK that means that classification of nu-

meral systems for representing values of numerical characteristics of geometric figures

includes decimal system in JsttK.

9.7. The direct content of attributes

A set st is the direct content in Jattribute : att, stt, attribute−order : nt, element−order :

int, cncplK if st is the set of all direct elements in Jattribute : att, stt, attribute−order : nt,

element−order : int, cncplK. A set st is the direct content in Jattribute : att, cnf ,

attribute−order : nt, element−order : int, cncpl.nK if st is the set of all direct elements in

Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.
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A set st is the direct content in Jattribute : att, stt, attribute−order : nt, element−order : intK

if st =
⋃

cncplJsttK stJattribute : att, stt, attribute−order : nt, element−order : int, cncplK. A set

st is the direct content in Jattribute : att, cnf , attribute−order : nt, element−order : intK if

st =
⋃

cncpl.nJcnf K stJattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.nK.

A set st is the direct content in Jattribute : att, stt, attribute−order : ntK if st =
⋃
−nt<int

stJ

attribute : att, stt, attribute−order : nt, element−order : intK. A set st is the direct content

in Jattribute : att, cnf , attribute−order : ntK if st =
⋃
−nt<int

stJattribute : att, cnf , attribute−

order : nt, element−order : intK.

A set st is the direct content in Jattribute : att, sttK if st =
⋃

nt
stJattribute : att, stt, attribute−

order : ntK. A set st is the direct content in Jattribute : att, cnfK if st =
⋃

nt
stJattribute :

att, cnf , attribute−order : ntK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : cm,−1 : area, 0 : el.g.2, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.3 = (−3 : 10, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2), and [support stt] =

{cncl.1, cncl.2, cncl.3}. Then the following properties hold:

– {el.g.1, el.g.2} is the direct content in Jattribute : area, sttK;

– {area} is the direct content in Jattribute : inch, sttK;

– {area} is the direct content in Jattribute : cm, sttK;

– {inch, cm} is the direct content in Jattribute : 10, sttK;

– {el.g.1} is the direct content in Jattribute : 10, sttK.

9.8. The content of attributes in the context of mediators

A set st is the content in Jattribute : att, stt, attribute−order : nt, element−order : int, cncpl,

mediator−degree : nat.1K if st is the set of all elements in Jattribute : att, stt, attribute−order :

nt, element−order : int, cncpl,mediator−degree : nat.1K. A set st is the content in Jattribute :

att, cnf , attribute−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K if st is the

set of all elements in Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.n,

mediator−degree : nat.1K.

A set st is the content in Jattribute : att, stt, attribute−order : nt, element−order : int,

mediator−degree : nat.1K if st =
⋃

cncplJsttK stJattribute : att, stt, attribute−order : nt, element−

order : int, cncpl,mediator−degree : nat.1K. A set st is the content in Jattribute : att, cnf ,

attribute−order : nt, element−order : int,mediator−degree : nat.1K if st =
⋃

cncpl.nJcnf K st
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Jattribute : att, cnf , attribute−order : nt, element−order : int, cncpl.n,mediator−degree : nat.1K.

A set st is the content in Jattribute : att, stt, attribute−order : nt,mediator−degree : nat.1K

if st =
⋃
−nt<int

stJattribute : att, stt, attribute−order : nt, element−order : int,mediator−

degree : nat.1K. A set st is the content in Jattribute : att, cnf , attribute−order : nt,mediator−

degree : nat.1K if st =
⋃
−nt<int

stJattribute : att, cnf , attribute−order : nt, element−order :

int,mediator−degree : nat.1K.

A set st is the content in Jattribute : att, stt,mediator−degree : nat.1K if st =
⋃

nt
stJ

attribute : att, stt, attribute−order : int,mediator−degree : nat.1K. A set st is the content in

Jattribute : att, cnf ,mediator−degree : nat.1K if st =
⋃

nt
stJattribute : att, cnf , attribute−order :

int,mediator−degree : nat.1K.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : perimeter, 0 : el.g.2, 1 : triangle, 2 : Euclidean, 3 :

2), cncl.3 = (−3 : 10,−2 : inch, 0 : el.g.3, 1 : rectangle, 2 : Euclidean, 3 : 2), and

[support stt] = {cncl.1, cncl.2, cncl.3}. Then the following properties hold:

– {el.g.1, el.g.2} is the content in Jattribute : 10, stt,mediator−degree : 2K;

– {el.g.3} is the content in Jattribute : 10, stt,mediator−degree : 1K;

– {triangle} is the content in Jattribute : 10, stt,mediator−degree : 3K;

– {rectangle} is the content in Jattribute : 10, stt,mediator−degree : 2K.

10. Classification and interpretation of attributes

Attributes are classified according to their orders.

10.1. Attributes of the order 1

An attribute att in Jstt, 1K models a usual attribute in Jss.q.iK. Elements in Jattribute :

att, stt, attribute−order : 1K are individuals and concepts in JsttK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.2, 1 : square, 2 : Riemannian, 3 : 3), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– the direct attribute area classifies geometric figures having area in JsttK;

– the individuals el.g.1 and el.g.2 are elements of the order 0 of the direct attribute area

in JsttK that means that classification of numerical characteristics of el.g.1 and el.g.2

includes area in JsttK;
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– the concepts triangle and square are elements of the order 1 of the direct attribute

area in JsttK that means that classification of numerical characteristics of triangles

and squares includes area in JsttK;

– the concept spaces Euclidean and Riemannian are elements of the order 2 of the

direct attribute area in JsttK that means that classification of numerical characteristics

of geometric figures in Euclidean and Riemannian spaces includes area in JsttK;

– the concept space spaces 2 and 3 are elements of the order 3 of the direct attribute

area in JsttK that means that classification of numerical characteristics of geometric

figures in two-dimensional and three-dimensional spaces includes area in JsttK.

10.2. Attributes of the order 2

An attribute att in Jstt, 2K models an attribute space in Jss.q.iK. Elements in Jattribute :

att, stt, attribute−order : 2K are direct attributes, individuals and concepts in JsttK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : inch,−1 : perimeter, 0 : el.g.2, 1 : square, 2 : Riemannian, 3 : 3),

and [support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– the attribute space inch classifies numerical characteristics of geometric figures mea-

sured in inches in JsttK;

– the direct attributes area and perimeter are elements of the order −1 of the at-

tribute space inch in JsttK that means that classification of numerical characteristics

of geometric figures measured in inches includes area and perimeter in JsttK;

– the individuals el.g.1 and el.g.2 are elements of the order 0 of the attribute space inch in

JsttK that means that classifications of geometric figures with numerical characteristics

measured in inches includes el.g.1 and el.g.2 in JsttK;

– the concepts triangle and square are elements of the order 1 of the attribute space

inch in JsttK that means that classifications of geometric figures with numerical char-

acteristics measured in inches includes triangles and squares JsttK;

– the concept spaces Euclidean and Riemannian are elements of the order 2 of the

attribute space inch in JsttK that means that classifications of spaces containing ge-

ometric figures with numerical characteristics measured in inches includes Euclidean

and Riemannian spaces in JsttK;

– the concept space spaces 2 and 3 are elements of the order 3 of the attribute space inch
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in JsttK that means that classifications of dimensions of spaces containing geometric

figures with numerical characteristics measured in inches includes dimensions 2 and

3 in JsttK.

10.3. Attributes of the order 3

An attribute att in Jstt, 3K models a space of attribute spaces in Jss.q.iK. Elements in

Jattribute : att, stt, attribute−order : 3K are attribute spaces, direct attributes, individuals

and concepts in JsttK.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−3 : 10,−2 : cm,−1 : perimeter, 0 : el.g.2, 1 : square, 2 : Riemannian, 3 : 3), and

[support stt] = {cncl.1, cncl.2}. Then the following properties hold:

– the attribute space space 10 classifies numerical characteristics of geometric figures

with values represented in decimal system;

– the attribute spaces inch and cm are elements of the order −2 of the attribute space

space 10 in JsttK that means that classifications of units of measurement of numerical

characteristics of geometric figures with values represented in decimal system includes

inches and centimeters in JsttK;

– the direct attributes area and perimeter are elements of the order −11 of the at-

tribute space space 10 in JsttK that means that classifications of numerical charac-

teristics of geometric figures with values represented in decimal system includes area

and perimeter in JsttK;

– the individuals el.g.1 and el.g.2 are elements of the order 0 of the attribute space

space 10 in JsttK that means that classifications of geometric figures with numerical

characteristics with values represented in decimal system includes el.g.1 and el.g.2 in

JsttK;

– the concepts triangle and square are elements of the order 1 of the attribute space

space 10 in JsttK that means that classifications of geometric figures with numeri-

cal characteristics with values represented in decimal system includes triangles and

squares in JsttK;

– the concept spaces Euclidean and Riemannian are elements of the order 2 of the

attribute space space 10 in JsttK that means that classifications of spaces containing

geometric figures with numerical characteristics with values represented in decimal
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system includes Euclidean space and Riemannian space in JsttK;

– the concept space spaces 10 and 2 are elements of the order 3 of the attribute space

space 10 in JsttK that means that classifications of dimensions of spaces containing

geometric figures with numerical characteristics with values represented in decimal

system includes dimensions 10 and 2 in JsttK.

10.4. Attributes of higher orders

An attribute att in Jstt, ntK, where nt > 3, is classified and interpreted in the similar way (by

the introduction of spaces of attribute space spaces and so on.).

11. Classification of conceptuals

11.1. General principles and definitions

We use the two-level scheme of classification of conceptuals. The upper (first) level is defined

by the maximal order of attributes of a conceptual. This level is described by the notion of

concretization order of a conceptual. The lower (second) level is defined by the set of all element

orders of a conceptual. This level is described by the notion of integral order of a conceptual.

11.1.1. Concretization orders of conceptuals

The number 0 is an order in JcncplK if the minimal order in Jcncpl, element :K is greater than

or equal to 0. A number nt is an order in JcncplK if −nt is a minimal order in Jcncpl, element :K.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.2 = (−2 : inch,−1 : area, 0 : el.g.2, 1 : triangle, 2 : Euclidean, 3 : 2), cncl.3 = (−1 :

area, 0 : el.g.3, 1 : triangle, 2 : Euclidean, 3 : 2), cncl.4 = (0 : el.g.4, 1 : triangle, 2 :

Euclidean, 3 : 2), cncl.5 = (1 : triangle, 2 : Euclidean, 3 : 2), cncl.6 = (2 : Euclidean, 3 :

2), and cncl.7 = (3 : 2). Then the conceptuals cncl.1, cncl.2, cncl.3 have the orders 3, 2, 1

and the conceptuals cncl.4, cncl.5, cncl.6, cncl.7 have the order 0.

Conceptuals of the order nt concretizes conceptuals of the orders which are less than nt.

They define the special kinds of such conceptuals and are used to classify them. Concretization

is performed by attributes of the order nt and their values. Therefore, the order of a conceptual

is also called the concretization order of the conceptual.

11.1.2. Integral orders of conceptuals
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11.1.2.1. Integral orders

A set st is an integral order in JcncplK if st is a set of all orders in Jcncpl, element :K.⊕
Let cncl.1 = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2),

cncl.1 = (−3 : 10,−1 : area, 1 : triangle, 3 : 2), cncl.1 = (−2 : inch,−1 : area, 2 :

Euclidean, 3 : 2). Then or.iJcncl.1K = {−3,−2,−1, 0, 1, 2, 3}, or.iJcncl.2K = {−3,−1, 1, 3},

and or.iJcncl.3K = {−2,−1, 2, 3}.

11.1.2.2. Refined integral orders

A set st is a refined integral order in JcncplK if st is a result of replacement of zero or more

orders int in JJcncpl, element :KK in the set or.iJcncplK by objects int : [cncpl int]. A refined integral

order in JcncplK refines an integral order in JcncplK, providing information on some elements of

cncpl with their orders. Let cncpl : or.i.r denote a conceptual cncpl which has the refined integral

order or.i.r.⊕
Let cncpl = (−3 : 10,−2 : inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2).

Then {−3,−2,−1, 0, 1, 2, 3}, {−3,−2 : inch,−1, 0, 1 : triangle, 2, 3} and {−3 : 10,−2 :

inch,−1 : area, 0 : el.g.1, 1 : triangle, 2 : Euclidean, 3 : 2} are refined integral orders in

JcncplK.

11.1.2.3. Properties of integral orders

Proposition 8. A conceptual cncpl has the single integral order.

Proof. This follows from the definition of the integral order of a conceptual. 2

Proposition 9. A conceptual cncpl has a finite set of refined integral orders.

Proof. This follows from the definition of the refined integral order and the finite number of

orders of conceptuals in the context of elements. 2

Proposition 10. The integral order in JcncplK is a refined integral order in JcncplK.

Proof. This follows from the definition of the refined integral order of a conceptual. 2

11.1.2.4. Notes

Conceptuals of the same concretization order are classified according to their integral orders.

Each integral order defines a separate kind of conceptuals.

Conceptuals allow to model ontological elements in detail. Each kind of conceptuals models

a separate kind of ontological elements.
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11.2. Modelling of ontological elements by conceptuals of the order 0

In this section conceptuals of the order 0 is classified according to their integral orders and

the ontological elements modelled by conceptuals of this classification is described.

A conceptual cncpl : {0} models the individual [cncpl 0].⊕
The conceptual (0 : fg) models the geometric figure fg.

A conceptual cncpl : {0, 1} models the individual [cncpl 0] from the concept [cncpl 1].⊕
The conceptual (0 : fg, 1 : triangle) models the triangle fg.

A conceptual cncpl : {1} models the concept [cncpl 1].⊕
A conceptual (1 : triangle) models triangles.

A conceptual cncpl : {1, 2} models the concept [cncpl 1] from the concept space [cncpl 2].⊕
The conceptual (1 : triangle, 2 : Euclidean) models triangles in Euclidean space.

A conceptual cncpl : {2} models the concept space [cncpl 2].⊕
The conceptual (2 : Euclidean) models Euclidean space.

A conceptual cncpl : {0, 2} models the individual [cncpl 0] from the concept space [cncpl 2].⊕
The conceptual (0 : fg, 2 : Euclidean) models the geometric figure fg in Euclidean space.

A conceptual cncpl : {0, 1, 2} models the individual [cncpl 0] from the concept [cncpl 1] from

the concept space [cncpl 2].⊕
The conceptual (0 : fg, 1 : triangle, 2 : Euclidean) models the triangle fg in Euclidean

space.

Classification of other conceptuals of the order 0 and description of the ontological elements

modelled by these conceptuals is performed in a similar way (by the introduction of the concept

space space and so on.). For example, a conceptual cncpl : {0, 1, 2, 3} models the individual

[cncpl 0] from the concept [cncpl 1] from the concept space [cncpl 2] from the concept space space

[cncpl 3].⊕
The conceptual (0 : fg, 1 : triangle, 2 : Euclidean, 3 : 2) models the triangle fg in two-

dimensional Euclidean space.

11.3. Modelling of ontological elements by conceptuals of the order 1

In this section conceptuals of the order 1 is classified according to their integral orders and

the ontological elements modelled by conceptuals of this classification is described.

A conceptual cncpl : {−1} models the attribute [cncpl − 1].
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⊕
The conceptual (−1 : area) models area of geometric figures.

A conceptual cncpl : {−1, 0} models the attribute [cncpl − 1] of the individual [cncpl 0].⊕
The conceptual (−1 : area, 0 : fg) models area of the geometric figure fg.

A conceptual cncpl : {−1, 0, 1} models the attribute [cncpl − 1] of the individual [cncpl 0] from

the concept [cncpl 1].⊕
The conceptual (−1 : area, 0 : fg, 1 : triangle) models area of the triangle fg.

A conceptual cncpl : {−1, 1} models the attribute [cncpl − 1] of individuals from the concept

[cncpl 1].⊕
The conceptual (−1 : area, 1 : triangle) models area of triangles.

A conceptual cncpl : {−1, 0, 1, 2} models the attribute [cncpl − 1] of the individual [cncpl 0]

from the concept [cncpl 1] from the concept space [cncpl 2].⊕
The conceptual (−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean) models area of the triangle

fg in Euclidean space.

A conceptual cncpl : {−1, 1, 2} models the attribute [cncpl −1] of individuals from the concept

[cncpl 1] from the concept space [cncpl 2].⊕
The conceptual (−1 : area, 1 : triangle, 2 : Euclidean) models area of triangles in Eu-

clidean space.

A conceptual cncpl : {−1, 0, 2} models the attribute [cncpl − 1] of the individual [cncpl 0] from

the concept space [cncpl 2].⊕
The conceptual (−1 : area, 0 : fg, 2 : Euclidean) models area of the geometric figure fg

in Euclidean space.

A conceptual cncpl : {−1, 2} models the attribute [cncpl − 1] of individuals from concepts

from the concept space [cncpl 2].⊕
The conceptual (−1 : area, 2 : Euclidean) models area of geometric figures in Euclidean

space.

Correlation between other kinds of conceptuals of the order 1 and the corresponding kinds

of ontological elements is performed in a similar way.

11.4. Modelling of ontological elements by conceptuals of the order 2

In this section conceptuals of the order 2 is classified according to their integral orders and

the ontological elements modelled by conceptuals of this classification is described.
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A conceptual cncpl : {−2,−1}models the attribute [cncpl −1] in the attribute space [cncpl −2].⊕
The conceptual (−2 : inch,−1 : area) models area measured in inches.

A conceptual cncpl : {−2,−1, 0} models the attribute [cncpl − 1] of the individual [cncpl 0] in

the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 0 : fg) models area of the geometric figure fg

measured in inches.

A conceptual cncpl : {−2,−1, 0, 1} models the attribute [cncpl − 1] of the individual [cncpl 0]

from the concept [cncpl 1] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 0 : fg, 1 : triangle) models area of the triangle fg

measured in inches.

A conceptual cncpl : {−2,−1, 1} models the attribute [cncpl − 1] of individuals from the

concept [cncpl 1] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 1 : triangle) models area of triangles measured in

inches.

A conceptual cncpl : {−2,−1, 0, 1, 2} models the attribute [cncpl −1] of the individual [cncpl 0]

from the concept [cncpl 1] from the concept space [cncpl 2] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean) models area of

the triangle fg in Euclidean space measured in inches.

A conceptual cncpl : {−2,−1, 1, 2} models the attribute [cncpl − 1] of individuals from the

concept [cncpl 1] from the concept space [cncpl 2] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 1 : triangle, 2 : Euclidean) models area of triangles

in Euclidean space measured in inches.

A conceptual cncpl : {−2,−1, 0, 2} models the attribute [cncpl − 1] of the individual [cncpl 0]

from the concept space [cncpl 2] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 0 : fg, 2 : Euclidean) models area of the geometric

figure fg in Euclidean space measured in inches.

A conceptual cncpl : {−2,−1, 2} models the attribute [cncpl −1] of individuals from concepts

from the concept space [cncpl 2] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch,−1 : area, 2 : Euclidean) models area of geometric figures in

Euclidean space measured in inches.
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A conceptual cncpl : {−2, 0} models the individual [cncpl 0] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch, 0 : fg) models the geometric figure fg with numerical charac-

teristics measured in inches.

A conceptual cncpl : {−2, 0, 1} models the individual [cncpl 0] from the concept [cncpl 1] in the

attribute space [cncpl − 2].⊕
The conceptual (−2 : inch, 0 : fg, 1 : triangle) models the triangle fg with numerical

characteristics measured in inches.

A conceptual cncpl : {−2, 1} models the concept [cncpl 1] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch, 1 : triangle) models triangles with numerical characteristics

measured in inches.

A conceptual cncpl : {−2, 1, 2} models the concept [cncpl 1] from the concept space [cncpl 2]

in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch, 1 : triangle, 2 : Euclidean) models triangles in Euclidean

space with numerical characteristics measured in inches.

A conceptual cncpl : {−2, 2}models the concept space [cncpl 2] in the attribute space [cncpl −2].⊕
The conceptual (−2 : inch, 2 : Euclidean) models geometric figures in Euclidean space

with numerical characteristics measured in inches.

A conceptual cncpl : {−2, 0, 2} models the individual [cncpl 0] from the concept space [cncpl 2]

in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch, 0 : fg, 2 : Euclidean) models the geometric figure fg in

Euclidean space with numerical characteristics measured in inches.

A conceptual cncpl : {−2, 0, 1, 2} models the individual [cncpl 0] from the concept [cncpl 1]

from the concept space [cncpl 2] in the attribute space [cncpl − 2].⊕
The conceptual (−2 : inch, 0 : fg, 1 : triangle, 2 : Euclidean) models the triangle fg in

Euclidean space with numerical characteristics measured in inches.

Correlation between other kinds of conceptuals of the order 2 and the corresponding kinds

of ontological elements is performed in a similar way.

11.5. Modelling of ontological elements by conceptuals of the higher

orders
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Classification of conceptuals of the order 3 or higher and description of the ontological

elements modelled by conceptuals of this classification is performed in a similar way (by the

introduction of the attribute space space and so on.).⊕
The conceptual (−3 : 10,−2 : inch,−1 : area, 0 : fg, 1 : triangle, 2 : Euclidean,

3 : 2) models area of the triangle fg in two-dimensional Euclidean space measured in

inches in decimal system.

12. Modelling of relations, types, domains, inheritance

12.1. Relations and their instances

Finite binary relations are modelled by direct concepts and their instances are modelled by

the elements of the order 0 of these concepts, represented by pairs of elements.

Finite relations of the arity nt are modelled by direct concepts and their instances are

modelled by the elements of the order 0 of these concepts, represented by sequence elements of

the length nt.

Finite relations of the variable arity are modelled by direct concepts and their instances are

modelled by the elements of the order 0 of these concepts, represented by sequence elements of

the variable length.

12.2. Types and domains

Finite types are modelled by direct concepts and their values are modelled by the elements

of the order 0 of these concepts. Domains as the special kind of finite types are also modelled by

direct concepts and their values are modelled by the elements of the order 0 of these concepts.

Types of attributes of the order nt are modelled by the special attribute type of the order

nt + 1. Values of this attribute are types.⊕
Let cncpl = (−2 : type,−1 : area, 0 : fg), and stt = (cncpl : real). Then the area of the

geometric figure fg is a real number in JsttK.⊕
Let cncpl = (−2 : type,−1 : area, 0 : ∗), and stt = (cncpl : real). Then the area of any

geometric figure is a real number in JsttK. The semantics of ∗ is defined in section ??

.

12.3. Inheritance

12.3.1. Inheritance on elements
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The usual inheritance relation on concepts is generalized to the inheritance relation on

elements of the same order in JsttK. It is modelled by the special direct concept inheritance

and their instances are modelled by the elements of the order 0 of the concept inheritance,

represented by the triples of elements. Elements of the triple specify the inheriting element,

the inherited element and their order. An element el inherits from el.1 in Jstt, intK if [stt (0 :

(el, el.1, int), 1 : inheritance)] 6= und.

Inheritance on elements redefines interpretation value of conceptuals as follows:

• if [stt cncpl] 6= und, then [value cncpl stt] = [stt cncpl];

• if [stt cncpl] = und, int is a maximal order in Jcncpl, element :K, st is a set of elJsttK such that

[cncpl int] inherits from el in Jstt, intK, st 6= ∅, and [value [cncpl int : el] stt] = [value [cncpl int :

el.1] stt] for all el, el.1 ∈ st, then [value cncpl stt] = [value [cncpl int : el] stt], where el ∈ st;

• otherwise, [value cncpl stt] = und.

12.3.2. Inheritance on direct concepts

The inheritance on direct concepts is the special case of the inheritance on elements.

A concept cncp.d inherits from a concept co..pt.d.1 in JsttK if cncp.d inherits from co..pt.d.1 in

Jstt, 1K.

12.3.3. Inheritance on element sequences

The inheritance relation on elements is generalized to the inheritance relation on element

sequences. This relation is modelled by the special direct concept inheritance :: sq and their

instances are modelled by the elements of the order 0 of this concept, represented by the

triples of sequence elements of the same length. The elements of the triple specify inheriting

elements, inherited elements and their orders. An element el.(∗) inherits from el.(∗).1 in Jstt, int.(∗)K

if int.(∗) = (int.1, ..., int.nt), int.1 < . . . < int.nt , [len el.(∗)] = [len el.(∗).1] = nt, and [stt (0 :

(el.(∗), el.(∗).1, int.(∗)), 1 : inheritance :: sq)] 6= und.

Inheritance on ordered elements redefines interpretation value of conceptuals as follows:

• if [stt cncpl] 6= und, then [value cncpl stt] = [stt cncpl];

• if

– [stt cncpl] = und,

– int.1 < . . . < int.nt are orders in Jcncpl, element :K,

– for all int if int ≥ int.1 and int is an order in Jcncpl, element :K, then int coincides with

one of the numbers int.1, ..., int.nt ,
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– st is a set of elJsttK such that ([cncpl int.1], . . . , [cncpl int.nt ]) inherits from el in Jstt, (int.1,

. . . , int.nt)K,

– st 6= ∅,

– [value [cncpl int.1 : [el . 1], . . . , int.nt : [el . nt]] stt] = [value [cncpl int.1 : [el.1 . 1], . . . ,

int.nt : [el.1 . nt]] stt] for each el, el.1 ∈ st,

then [value cncpl stt] = [value [cncpl int.1 : [el . 1], . . . , int.nt : [el . nt]] stt], where el ∈ st;

• otherwise, [value cncpl stt] = und.

13. Generic conceptuals

A generic conceptual defines a set of conceptuals satisfying a certain template and sets the

default value for these conceptuals. Conceptuals from this set are called instances of the generic

conceptual. The template of the generic conceptual is defined by its form.

13.1. The main definitions

13.1.1. Generic conceptuals

Let * ∈ Atm. A conceptual cncplJsttK is a generic conceptual in JsttK if there exists ordJcncplK

such that [cncpl ord] ∈ {*, (*, tp), (*, tp, prm), (*, *, prm)}. The element pl.s of the form [cncpl ord]

from this definition is called a substitution place in Jcncpl, stt, ordK. The number ord is called

an order in Jpl.s, cncpl, sttK. The elements tp and prm are called a type and parameter in

Jpl.s, cncpl, stt, ordK.

13.1.2. Kinds of generic conceptuals

A conceptual cncpl.g is partially typed in JsttK if there exist pl.s, tp and ord such that pl.s is a

substitution place in Jcncpl.g, stt, ordK and tp is a type in Jpl.s, cncpl.g, stt, ordK.

A conceptual cncpl.g is typed in JsttK if for all pl.s and ord if pl.s is a substitution place in

Jcncpl.g, stt, ordK, then there exists tp such that tp is a type in Jpl.s, cncpl.g, stt, ordK.

A conceptual cncpl.g is parametric in JsttK if there exist pl.s, prm and ord such that pl.s is a

substitution place in Jcncpl.g, stt, ordK and prm is a parameter in Jpl.s, cncpl.g, stt, ordK.

13.1.3. Instances of generic conceptuals

A conceptual cncpl is an instance in Jcncpl.g, sttK, if the following properties hold:

• if [cncpl.g int] is not a substitution place in Jcncpl.g, stt, intK, then [cncpl int] = [cncpl.g int];
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• if [cncpl.g int] is a substitution place in Jcncpl.g, stt, intK, then [cncpl int] is an element in

Jstt, intK;

• if [cncpl.g int] ∈ {(*, tp), (*, tp, prm)}, then [cncpl int] is an element in Jconcept : tp, stt,

concept−order : 1, element−order : 0K;

• if prm is a parameter in Jpl.s.1, cncpl.g, stt, or.e.1K and Jpl.s.2, cncpl.g, stt, or.e.2K, then [cncpl or.e.1]

= [cncpl or.e.2].

13.1.4. States with generic conceptuals

A state stt is a state with generic conceptuals, if the following properties hold:

• (the consistency property) if cncl.g.1 6= cncl.g.2, then there is no cncpl such that cncpl is an

instance of cncl.g.1 in JsttK and cncpl is an instance of cncl.g.2 in JsttK;

• interpretation value of conceptuals is redefined as follows:

– if [stt cncpl] 6= und, then [value cncpl stt] = [stt cncpl];

– if [stt cncpl] = und and cncpl is an instance in Jcncpl.g, sttK, then [value cncpl stt] =

[stt cncpl.g];

– otherwise, [value cncpl stt] = und.

13.2. Examples of generic conceptuals

A conceptual cncpl.g : {−1, 0 : ∗, 1} models the property that the value of the attribute

[cncpl.g −1] of individuals from the concept [cncpl.g 1] equals [stt cncpl.g] in JsttK if it is not defined

explicitly.⊕
The conceptual cncpl.g = (−1 : area, 0 : ∗, 1 : triangle) models the property that area of

triangles equals [stt cncpl.g] in JsttK if it is not defined explicitly.

A conceptual cncpl.g : {−1, 0 : ∗} models the property that the value of the attribute [cncpl.g −

1] of individuals equals [stt cncpl.g] in JsttK if it is not defined explicitly.⊕
The conceptual cncpl.g = (−1 : area, 0 : ∗) models the property that area of geometric

figures equals [stt cncpl.g] in JsttK if it is not defined explicitly.

A conceptual cncpl.g : {0 : ∗, 1} models the property that the value of individuals from the

concept [cncpl.g 1] equals [stt cncpl.g] in JsttK if it is not defined explicitly.⊕
The conceptual cncpl.g = (0 : ∗, 1 : triangle)models the property that the value of triangles

equals [stt cncpl.g] in JsttK if it is not defined explicitly. What is the value of a triangle

depends on interpretation.
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13.3. Modelling of ontological elements and

their properties based on generic conceptuals

Generic conceptuals together with attributes allow to model ontological elements and their

properties in more detail.

A conceptual cncpl.g : {−2 : type,−1, 0 : ∗, 1} models the property that the type of the

attribute [cncpl.g − 1] of individuals from the concept [cncpl.g 1] equals [stt cncpl.g] in JsttK if it is

not defined for individuals explicitly.⊕
The conceptual cncpl.g = (−2 : type,−1 : area, 0 : ∗, 1 : triangle) models the property

that the type of the attribute area of triangles equals [stt cncpl.g] in JsttK if it is not defined

for triangles explicitly.

A conceptual cncpl.g : {−2 : type,−1, 0 : ∗} models the property that the type of the attribute

[cncpl.g − 1] of individuals equals [stt cncpl.g] in JsttK if it is not defined for individuals explicitly.⊕
The conceptual cncpl.g = (−2 : type,−1 : area, 0 : ∗) models the property that the type

of the attribute area of geometric figures equals [stt cncpl.g] in JsttK if it is not defined for

geometric figures explicitly.

A conceptual cncpl.g : {−2 : type, 0 : ∗} models the property that the type of individuals

equals [stt cncpl.g] in JsttK if it is not defined for individuals explicitly.⊕
The conceptual cncpl.g = (−2 : type, 0 : ∗) models the property that the type of geometric

figures equals [stt cncpl.g] in JsttK if it is not defined for geometric figures explicitly.

A conceptual cncpl.g : {−2 : type, 0 : ∗, 1} models the property that the type of individuals

from the concept [cncpl.g 1] equals [stt cncpl.g] in JsttK if it is not defined for such individuals

explicitly.⊕
The conceptual cncpl.g = (−2 : type, 0 : ∗, 1 : triangle) models the property that the type

of triangles equals [stt cncpl.g] in JsttK if it is not defined for triangles explicitly.

14. The CCSL language

The CCSL language (Conceptual Configuration System Language) is a basic language of

CCSs. Interpretable elements of CCSL are called basic elements of CCSs.

Let sb ⊆ (x : x0, y : y0, z : z0, u : u0, v : v0, w : w0, x1 : x1.0, ..., xnt : xnt.0, conf :: in : cnf ).

14.1. Syntax of CCSL
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An object ob is an atom in CCSL if

• ob is a sequence of Unicode symbols except for the whitespace symbols and the symbols

”, ′, (, ), ;, ,, and :, or

• ob is a special atom, or

• ob has the form ”ob.1” called a string, where ob.1 is a sequence of Unicode symbols in which

each occurrence of the symbol ” is preceded by the symbol ′ and each occurrence of the

symbol ′ is doubled.

The set Ato.s of special atoms includes the object ::= and can be extended.

An object ob is an element in CCSL if ob ∈ Atm, ob = el : el.1, ob = (el.∗), or ob = el :: el.1.

The whitespace symbols and the semicolon in CCSL are element delimiters along with

comma. For example, (el.1, el.2), (el.1; el.2) and (el.1 el.2) represent the same element.

An element el.a is a conceptual in CCSL if all its attributes are integers.

An element el.a is a conceptual state in CCSL if all its attributes are conceptuals.

An element el.a is a conceptual configuration in CCSL if [image el.a] ⊆ Stt.

The element (pattern pt var (vr.∗) seq (vr.s.∗)) in CCSL represents the pattern specification

(pt, (vr.∗), (vr.s.∗)).

The element (definition pt var (vr.∗) seq (vr.s.∗) then bd) :: name :: nm in CCSL represents

the element definition (pt, (vr.∗), (vr.s.∗), bd) with the name nm.

For simplicity, we omit the names of interpretations and definitions below.

14.2. The special forms for interpretations and definitions

In this section we define the special forms for interpretations and definitions used below.

The form (interpretation pt var (vr.∗) seq (vr.s.∗) then fn) :: name :: nm denotes the inter-

pretation (pt, (vr.∗), (vr.s.∗), fn) with the name nm.

The objects var (vr.∗) and seq (vr.s.∗) in the form (interpretation ...) can be omitted. The

omitted objects correspond to var () and seq (), respectively.

Let {vr.∗}, {vr.s.∗}, {vr.∗.1} and {vr.∗.2} are pairwise disjoint, and {vr.∗.3} ⊆ {vr.∗} ∪ {vr.∗.1} ∪

{vr.∗.2}. The form (definition pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) where

cnd then bd) called a definition form is defined as follows:

• (definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd then bd) is

a shortcut for (definition pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) then

(if cnd then bd else und));
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• (definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3, vr) then bd) is a short-

cut for (definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) then (let w be

vr in [subst (vr :: ∗ : w) bd])), where w is a new element that does not occur in this defi-

nition;

• (definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val () then bd) is a shortcut

for (definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then bd);

• (definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1, vr) abn (vr.∗.2) then bd) is a shortcut for

(definition pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then (if (vr is undefined) then

und else bd));

• (definition pt var (vr.∗) seq (vr.s.∗) und () abn (vr.∗.2) then bd) is a shortcut for (definition

pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then bd);

• (definition pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2, vr) then bd) is a shortcut for (definition pt

var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then (if (vr is abnormal) then vr else bd));

• (definition pt var (vr.∗) seq (vr.s.∗) abn () then bd) is a shortcut for (definition pt var (vr.∗)

seq (vr.s.∗) then bd).

The element cnd specifies the restriction on the values of the pattern variables. The undefined

value is propagated through the variables of vr.∗.1. Abnormal values are propagated through

the variables of vr.∗.2. The special element vr :: ∗ references to the value of element associated

with the pattern variable vr. A pattern variable is evaluated if the element associated with it is

evaluated. Thus, the sequence vr.∗.3 contains evaluated pattern variables. A pattern variable is

quoted if the element associated with it is not evaluated. Let Frm.d be a set of definition forms.

The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3) and where cnd in the

form (definition ...) can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

15. Semantics of interpretable elements in CCSL

15.1. Abnormal elements operations

The element und is defined as follows:

(definition und then und :: q).

The element exc is defined as follows:

(definition x var (x) where (x is exception) then x :: q) :: name :: (”@”, exception).
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The definition satisfies the property: nm ≺Jord.intrK (”@”, exception) for each nm such that nm

is a name of an atomic element interpretation or element definition with the pattern distinct

from vr, where vr is a variable of this pattern.

The element el :: q is defined as follows:

(interpretation x :: q var (x) then fn),

where [fn sb] = x0.

15.2. Statements

The element (if x then y else z) is defined as follows:

(definition (if x then y else z) var (x, y, z) val (x)

then (if x :: ∗ then y else z) :: atm);

(interpretation (if x then y else z) :: atm var (x, y, z) then fn),

where [fn sb] = [if [x0 6= und] then [value y0 [sb conf :: in]] else [value z0 [sb conf :: in]]].

The element (if x then y elseif z then u ... else v) is defined as follows:

(definition (if x then y elseif z) var (x, y, z) seq (z)

then (if x then y else (if z))).

The element (let x be y in z) is defined as follows:

(interpretation (let x be y in z) var (x, y, z) then fn),

where [fn sb] = [value [subst (x0 : [value y0 [sb conf :: in]]) z0] [sb conf :: in]].

The element el of the form (let :: seq x be y in z), where x ∈ El.(∗), y ∈ El.(∗), and

[len x] = [len y], is defined by the rule

(rule (let :: seq x, y be z, u in v) var (x, z, v) seq (y, u)

then (let x be z in (let :: seq y be u in v)));

(rule (let :: seq be in v) var (v) then v).

The elements x, y and z are called a substitution variables specification, substitution values

specification and substitution body in JelK. The elements of x and y are called substitution

variables and substitution values in JelK.

15.3. Characteristic functions for defined concepts

An object df.c is a concept definition if df.c is an interpretation of the form (interpretation

(el.1 is el.2) var (vr.∗) seq (vr.s.∗) then fn) :: name :: nm, or df.c is a definition of the form

(definition (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then bd) :: name :: nm. Concept definitions specify
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concepts and their instances. Concepts specified by them are called defined concepts. The

elements el.1 and el.2 are called an instance pattern and concept pattern in Jdf.cK. The element

(el.1 is el.2) is called a characteristic function in Jdf.cK. Let Df.c be a set of concept definitions.

An element cncp.d is a defined concept in Jdf.c, sbK if cncp is an instance in J(el.2, var (vr.∗) seq

(vr.s.∗)),mt, sbK. An element cncp.d is a defined concept in Jdf.cK if there exists sb such that cncp.d

is a defined concept in Jdf.c, sbK. An element cncp.d is a defined concept in JcnfK if there exists

df.cJcnfK such that cncp.d is a defined concept in Jdf.cK. Let Cncp.d be a set of defined concepts.

An element instn is an instance in Jdf.c, sbK if instn is an instance in J(el.1, var (vr.∗) seq (vr.s.∗)),

mt, sbK. An element instn is an instance in Jdf.cK if there exists sb such that cncp.d is an instance

in Jdf.c, sbK.

An element instn is an instance in Jcncp.d, cnf , df.cK if instn is an instance in Jdf.c, cncp.dK is a

defined concept in Jdf.cK, and [value (instn is cncp.d) cnf (nm)] 6= und. An element instn is an

instance in Jcncp.d, cnfK if there exists df.c such that instn is an instance in Jcncp.d, cnf , df.cK. An

element cncp.d is an instance in Jcnf ,mtK if there exists cncp.d such that instn is an instance in

Jcncp.d, cnfK. Let Instn be a set of instances.

A set st is called a content in Jcncp.d, cnfK if st is a set of all instn such that instn is an instance

in Jcncp.d, cnfK. Let [content cncp.d cnf ] denote the content in Jcncp.d, cnfK.

The notion of defined concepts is extended to the definitions of the form (definition (el.1 is

el.2) var (vr.∗) seq (vr.s.∗) und (vr.∗.1) val (vr.∗.3) where cnd then bd). Let df have this form. An

element cncp.d is a defined concept in Jdf , sbK if cncp.d is a defined concept in Jdf.1, sbK, where df.1

is a definition of the form (definition (el.1 is el.2) var (vr.∗) seq (vr.s.∗) then bd.1) such that df

is reduced to df.1.

The element (x is atom) specifying that x is an atom is defined as follows:

(interpretation (x is atom) var (x) then fn),

where [fn sb] = [if [x0 ∈ Atm] then true else und].

The element (x is update) specifying that x is an element update is defined as follows:

(interpretation (x is update) var (x) then fn),

where [fn sb] = [if [x0 ∈ Up.e] then true else und].

The element (x is multi−attribute) specifying that x is a multi-attribute element is defined

as follows:

(interpretation (x is multi−attribute) var (x) then fn),

where [fn sb] = [if [x0 ∈ El.ma] then true else und].
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The element (x is attribute) specifying that x is an attribute element is defined as follows:

(interpretation (x is attribute) var (x) then fn),

where [fn sb] = [if [x0 ∈ El.a] then true else und].

The element (x is sorted) specifying that x is a sorted element is defined as follows:

(interpretation (x is sorted) var (x) then fn),

where [fn sb] = [if [x0 ∈ El.s] then true else und].

The element (x is undefined) specifying that x equals und is defined as follows:

(interpretation (x is undefined) var (x) then fn),

where [fn sb] = [if [x0 = und] then true else und].

The element (x is defined) specifying that x does not equal und is defined as follows:

(interpretation (x is defined) var (x) then fn).

where [fn sb] = [if [x0 6= und] then true else und].

The element (x is exception) specifying that x is an exception is defined as follows:

(interpretation (x is exception) var (x) then fn),

where [fn sb] = [if [x0 ∈ Exc] then true else und].

The element (x is normal) specifying that x is a normal element is defined as follows:

(interpretation (x is normal) var (x) then fn),

where [fn sb] = [if [x0 ∈ El.n] then true else und].

The element (x is abnormal) specifying that x is an abnormal element is defined as follows:

(interpretation (x is abnormal) var (x) then fn),

where [fn sb] = [if [x0 ∈ El.ab] then true else und].

The element (x is sequence) specifying that x is a sequence element is defined as follows:

(interpretation (x is sequence) var (x) then fn),

where [fn sb] = [if [x0 ∈ El.(∗)] then true else und].

The element (x is set) specifying that the elements of the sequence element x are pairwise

distinct is defined as follows:

(definition (x is set) var (x) where (x is sequence) then (x is set) :: atm);

(interpretation (x is set) :: atm var (x) then fn),

where [fn sb] = [if [[x0 . nt.1] 6= [x0 . nt.2] for all nt.1 and nt.2 such that nt.1 6= nt.2, nt.1 ≤

[len x0] and nt.2 ≤ [len x0]] then true else und].

The element (x is empty) specifying that x is an empty element is defined as follows:

(definition (x is empty) var (x) then (x :: q = ())).
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The element (x is nonempty) specifying that x is not an empty element is defined as follows:

(definition (x is nonempty) var (x) then (x :: q ! = ())).

The element (x is conceptual) specifying that x is a conceptual is defined as follows:

(interpretation (x is conceptual) var (x) then fn),

where [fn sb] = [if [x0 ∈ Cncpl] then true else und].

The element (x is (conceptual in y)) specifying that x is a conceptual in the context of the

state y is defined as follows:

(definition (x is (conceptual in y)) var (x, y)

where ((x is conceptual) and (y is state)) then (x is conceptual in y) :: atm);

(interpretation (x is (conceptual in y)) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 ∈ CncplJy0K] then true else und].

The element (x is state) specifying that x is a conceptual state is defined as follows:

(interpretation (x is state) var (x) then fn),

where [fn sb] = [if [x0 ∈ Stt] then true else und].

The element (x is configuration) specifying that x is a conceptual configuration is defined

as follows:

(interpretation (x is configuration) var (x) then fn),

where [fn sb] = [if [x0 ∈ Cnf ] then true else und].

The element (x is nat) specifying that x is a natural number is defined as follows:

(interpretation (x is nat) var (x) then fn),

where [fn sb] = [if [x0 ∈ Nt] then true else und].

The element (x is nat0) specifying that x is either a natural number, or a zero is defined as

follows:

(interpretation (x is nat0) var (x) then fn),

where [fn sb] = [if [x0 ∈ Nt0] then true else und].

The element (x is int) specifying that x is an integer is defined as follows:

(interpretation (x is int) var (x) then fn),

where [fn sb] = [if [x0 ∈ Int] then true else und].

The element (x is (satisfiable in y)) specifying that x is satisfiable in the context of variables

y is defined as follows:

(definition (x is (satisfiable in y)) var (x, y) where (y is sequence)

then (x is (satisfiable in y)) :: atm);
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(interpretation (x is (satisfiable in y)) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 is satisfiable in J(y0, [sb conf :: in])K] then true else und].

The element (x is (valid in y)) specifying that x is valid in the context of variables y is

defined as follows:

(definition (x is (valid in y)) var (x, y) where (y is sequence)

then (x is (valid in y)) :: atm);

(interpretation (x is (valid in y)) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 is valid in J(y0, [sb conf :: in])K] then true else und].

The element (x is (sequence y)) specifying that x is a sequence element such that the value

in J(el is y)K does not equal und for each element el of x is defined as follows:

(definition ((x y) is (sequence z)) var (x, z) seq (y)

then ((x is z) and ((y) is (sequence z)));

(definition (() is (sequence x)) var (x) then true).

15.4. Elements operations

The element () is defined as follows:

(definition () then () :: q).

The element (len x) specifying the length of the element x is defined as follows:

(definition (len x) var (x) val (x) then (len x :: ∗) :: atm);

(interpretation (len x) :: atm var (x) then fn),

where

• if x0 ∈ Atm ∪ Up.e ∪ El.s, then [fn sb] = 1;

• if x0 = (el.∗), then [fn sb] = [len el.∗].

The element (x = y) specifying the equality of the elements x and y is defined as follows:

(definition (x = y) var (x, y) val (x, y)

then (x :: ∗ = y :: ∗) :: atm);

(interpretation (x = y) :: atm var (x, y) then fn),

where

• if x0 and y0 are equal atoms, then [fn sb] = true;

• if x0 ∈ Up.e, y0 ∈ Up.e, argJx0K = argJy0K, and vlJx0K = vlJy0K, then [fn sb] = true;

• if x0 ∈ El.s, y0 ∈ El.s, elJx0K = elJy0K, and srtJx0K = srtJy0K, then [fn sb] = true;

• if x0 ∈ El.(∗), y0 ∈ El.(∗), and x0 and y0 are equal sequences, then [fn sb] = true;
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• otherwise, [fn sb] = und.

The element (x ! = y) specifying the inequality of the elements x and y is defined in the

similar way.

The element (x . y) specifying the y-th element of the sequence element x is defined as

follows:

(definition (x . y) var (x, y) val (x, y)

where ((x :: ∗ is sequence) and (y :: ∗ is nat)) then (x :: ∗ . y :: ∗) :: atm);

(interpretation (x . y) :: atm var (x, y) then fn),

where [fn sb] = [x0 . y0].

The element (x .. y) specifying the value of the attribute element x for the attribute y is

defined as follows:

(definition (x .. y) var (x, y) val (x) where (x :: ∗ is attribute)

then (x :: ∗ .. y) :: atm);

(interpretation (x .. y) :: atm var (x, y) then fn),

where [fn sb] = [x0 y0].

The element (x + y) specifying the concatenation of the sequence elements x and y is

defined as follows:

(definition (x + y) var (x, y) val (x, y)

where ((x :: ∗ is sequence) and (y :: ∗ is sequence)) then (x :: ∗ + y :: ∗) :: atm);

(interpretation (x + y) :: atm var (x, y) then fn),

where [fn sb] = (el.∗ el.1.∗) for some el.∗ and el.1.∗ such that x0 = (el.∗) and y0 = el.1.∗.

The element (x .+ y) specifying the addition of the element x to the head of the sequence

element y is defined as follows:

(definition (x .+ y) var (x, y) val (x, y) where (y :: ∗ is sequence)

then (x :: ∗ .+ y :: ∗) :: atm);

(interpretation (x .+ y) :: atm var (x, y) then fn),

where [fn sb] = [if [y0 = (el.∗) for some el.∗] then (x0 el.∗) else und].

The element (x .+ :: set y) specifying the addition of the element x to the head of the

sequence element y representing a set is defined as follows:

(definition (x .+ :: set y) var (x, y) val (x, y) where (y :: ∗ is set)

then (x :: ∗ .+ :: set y :: ∗) :: atm);

(interpretation (x .+ :: set y) :: atm var (x, y) then fn),
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where [fn sb] = [if [y0 = (el.∗) for some el.∗] then [if [x0 ∈ el.∗] then (el.∗) else (x0 el.∗)] else

und].

The element (x + . y) specifying the addition of the element y to the tail of the sequence

element x is defined as follows:

(definition (x + . y) var (x, y) val (x, y) where (x :: ∗ is sequence)

then (x :: ∗ + . y :: ∗) :: atm);

(interpretation (x + . y) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 = (el.∗) for some el.∗] then (el.∗ y0) else und].

The element (x + . :: set y) specifying the addition of the element y to the tail of the

sequence element x representing a set is defined as follows:

(definition (x + . :: set y) var (x, y) val (x, y) where (x :: ∗ is set)

then (x :: ∗ + . :: set y :: ∗) :: atm);

(interpretation (x + . :: set y) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 = (el.∗) for some el.∗] then [if [y0 ∈ el.∗] then (el.∗) else (el.∗ y0)] else und].

The element (x − . :: set y) specifying the deletion of the element y from the sequence

element x representing a set is defined as follows:

(definition (x − . :: set y) var (x, y) val (x, y) where (x :: ∗ is set)

then (x :: ∗ − . :: set y :: ∗) :: atm);

(interpretation (x − . :: set y) :: atm var (x, y) then fn),

where [fn sb] = [if [x0 = (el.∗.1 y0 el.∗.2) for some el.∗.1 and el.∗.2] then (el.∗.1 el.∗.2) else [if [x0 =

(el.∗) for some el.∗] then (el.∗) else und]].

The element (upd x y1 : z1, ..., ynt : znt) specifying the sequential updates of the attribute

element x at the points y1, ..., ynt by z1, ..., znt is defined as follows:

(definition (upd x y) var (x) seq (y) val (x)

where ((x :: ∗ is attribute) and ((y) is (sequence update))) then (upd :: att x :: ∗ y));

(definition (upd :: att x y z) var (y) seq (z) und (x)

then (let w be (upd1 :: att x y) in (upd :: att w z)));

(definition (upd :: att x) var (x) then x);

(definition (upd1 :: att x y : z) var (x, y, z) val (z)

then (upd1 :: att x y : z :: ∗) :: atm);

(interpretation (upd1 :: att x y : z) :: atm var (x, y, z) then fn),

where [fn sb] = [x0 y0 : z0].
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The element (upd x y : z) specifying the update of the sequence element x at the index y

by z is defined as follows:

(definition (upd x y z) var (x, y, z) val (x, y, z)

where ((x :: ∗ is sequence) and (y :: ∗ is nat) and (y :: ∗ <= ((len x :: ∗ :: q) + 1)))

then (upd :: seq x :: ∗ y :: ∗ z :: ∗) :: atm);

(interpretation (upd :: seq x y : z) :: atm var (x, y, z) then fn),

where [fn sb] = [att−obj−to−seq [[seq−to−att−obj x0] y0 : z0]].

The element (x in :: set y) specifying that x is an element of the sequence element y is

defined as follows:

(definition (x in :: set y) var (x, y) where (y is sequence)

then (x in :: set y) :: atm);

(interpretation (x in :: set y) :: atm var (x, y) then fn),

where [fn sb] = [x0 ∈ y0].

The element (x includes :: set y) specifying that the sequence element x includes the ele-

ments of the sequence element y is defined as follows:

(definition (x includes :: set y) var (x, y)

where ((x is sequence) and (y is sequence)) then (x includes :: set y) :: atm);

(interpretation (x includes :: set y) :: atm var (x, y) then fn),

where [fn sb] = [if [el ∈ x0 for each el ∈ y0] then true else und].

The element (attributes in x) specifying the sequence of attributes of the attribute element

x is defined as follows:

(definition (attributes in x) var (x) where (x is attribute)

then (attributes in x) :: atm);

(interpretation (attributes in x) :: atm var (x, y) then fn),

where [fn sb] = (arg.1, ..., arg.nt0) for x0 = (arg.1 : vl.1, ..., arg.nt0 : vl.nt0).

The element (values in x) specifying the sequence of attribute values of the attribute element

x is defined as follows:

(definition (values in x) var (x) where (x is attribute) then (values in x) :: atm);

(interpretation (values in x) :: atm var (x, y) then fn),

where [fn sb] = (vl.1, ..., vl.nt0) for x0 = (arg.1 : vl.1, ..., arg.nt0 : vl.nt0).

The element (element in x) specifying the element of the sorted element x is defined as

follows:
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(definition (element in x) var (x) then (if x matches y :: z var (y, z) then y :: q)).

The element (sort in x) specifying the sort of the sorted element x is defined as follows:

(definition (sort in x) var (x) then (if x matches y :: z var (y, z) then z :: q)).

The element (attribute in x) specifying the attribute of the element update x is defined as

follows:

(definition (attribute in x) var (x) then (if x matches y : z var (y, z) then y :: q)).

The element (value in x) specifying the value of the element update x is defined as follows:

(definition (value in x) var (x) then (if x matches y : z var (y, z) then z :: q)).

15.5. Boolean operations

The element true is defined as follows:

(definition true then true :: q).

The element (x and y) specifying the conjunction of x and y is defined as follows:

(definition (x and y) var (x, y) then (if x then y else und)).

The elements (x op y), where op ∈ {or,=>,<=>} specifying the disjunction, implication

and equivalence of x and y are defined in the similar way.

The element (x1 and x2 and ... and xnt) specifying the conjunction of x1, x2, ..., xnt is defined

as follows:

(definition (x and y and z) var (x, y) seq (z) then ((x and y) and z).

The element (x1 or x2 or ... or xnt) specifying the disjunction of x1, x2, ..., xnt is defined in

the similar way.

The element (not x) specifying the negation of x is defined as follows:

(definition (not x) var (x) then (if x then und else true)).

15.6. Integers

The element int is defined as follows:

(definition x var (x) where (x is int) then x :: q) :: name :: (”@”, int).

The definition satisfies the property: (”@”, exception) ≺Jord.intrK (”@”, int).

The element (x + y) specifying the sum of x and y is defined as follows:

(definition (x + y) var (x, y) val (x, y)

where ((x :: ∗ is int) and (y :: ∗ is int)) then (x :: ∗ + y :: ∗) :: atm);

(interpretation (x + y) :: atm var (x, y) then fn),
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where [fn sb] = [x0 + y0].

The elements (x op y), where op ∈ {−, ∗, }, specifying the integer operations − and ∗ are

defined in the similar way.

The element (x div y) specifying the quotient of x divided by y is defined as follows:

(definition (x div y) var (x, y) val (x, y)

where ((x :: ∗ is int) and (y :: ∗ is int) and (y :: ∗ ! = 0))

then (x :: ∗ div y :: ∗) :: atm);

(interpretation (x div y) :: atm var (x, y) then fn),

where [fn sb] = [x0 div y0].

The element (x mod y) specifying the integer operation mod is defined in the similar way.

The element (x < y) specifying that x is less than y is defined as follows:

(definition (x < y) var (x, y) val (x, y)

where ((x :: ∗ is int) and (y :: ∗ is int)) then (x :: ∗ < y :: ∗) :: atm);

(interpretation (x < y) :: atm var (x, y) then fn),

where [fn sb] = [x0 < y0].

The elements (x op y), where op ∈ {<=, >,>=}, specifying the integer relations ≤, > and

≥, are defined in the similar way.

15.7. Conceptuals operations

The element (x in y) specifying the value of the conceptual x in the state y is defined as

follows:

(definition (x in y) var (x, y)

where ((x is conceptual) and (z is state)) then (x in y) :: atm);

(interpretation (x in y) :: atm var (x, y) then fn),

where [fn sb] = [y0 x0].

The element x :: state :: y specifying the value of the conceptual x in the substate with the

name y of the current configuration is defined as follows:

(definition x :: state :: y var (x, y) where (x is conceptual)

then (x in (conf :: q .. y)) x :: state :: y :: atm);

(in x :: state :: y :: atm var (x, y) then fn),

where (x0 :: state :: y0 :: atm, el.∗ # cnf →fn,sb el.∗ # [[cnf y0] x0] # cnf .

The element cncpl is a shortcut for cncpl :: ().
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15.8. Countable concepts operations

A normal element cncp.c is a countable concept in JcnfK if [[cnf countable−concept] (0 :

cncp.c)] ∈ Nt. Thus, the substate countable−concept specifies countable concepts. Let Cncp.c be

a set of countable concepts. The element [[cnf countable−concept] (0 : cncp.c)] is called an order

in Jcncp.c, cnfK. Let Ord.cncp.c be a set of orders of countable concepts. An element nt :: cc :: cncp.c

is called an instance in Jcncp.cK. An element nt :: cc :: cncp.c is an instance in Jcncp.c, cnfK if

nt ≤ ord.cncp.cJcncp.c, cnfK.

The element (x is countable−concept) specifying that x is a countable concept is defined as

follows:

(definition (x is countable−concept) var (x)

then (let w be ((cnf .. countable−concept) .. (0 : x)) in (w is int)).

The element nt :: cc :: cncp.c is defined by the rule:

(definition x :: cc :: y var (x, y) where ((x is int) and (y is countable−concept))

then x :: cc :: y :: q).

15.9. Matching operations

The conditional pattern matching element el of the form (if x matches y var z seq u then v

else w), where (y, z, u) is a pattern specification, is defined as follows:

(definition (if x matches y var z seq u then v else w) var (x, y, z, u, v, w)

where ((z is sequence) and (u is sequence) and (z includes :: set u))

then (if x matches y var z seq u then v else w) :: atm);

(interpretation (if x matches y var z seq u then v else w) :: atm

var (x, y, z, u, v, w) then fn),

where [value (if x0 matches y0 var z0 seq u0 then v0 else w0) :: atm sb cnf ], el.∗ # cnf →fn,sb

[if [x0 is an instance in J(y0, z0, u0),mt, sb.1K for some sb.1] then [subst sb.1 ∪ (conf :: in : cnf )

v0] else [subst (conf :: in : cnf ) w0], el.∗ # cnf . The objects x, y, z, u, v and w are called a

matched element, pattern, variable specification, sequence variable specification, then-branch

and else-branch in JelK. The elements of z are called pattern variables in JelK. The element el

executes the instance of the then-branch v in Jsb.1K if x is an instance in Jy, sb.1K. Otherwise,

the element el executes the else-branch w.

Let {vr.∗}, {vr.s.∗}, {vr.∗.1} and {vr.∗.2} are pairwise disjoint, and {vr.∗.3} ⊆ {vr.∗} ∪ {vr.∗.1} ∪

{vr.∗.2}. The form (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val (vr.∗.3) where
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cnd then el.1 else el.2) is defined as follows:

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd then el.1

else el.2) is a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.1) und (vr.∗.2) val

(vr.∗.3) then (if cnd then el.1 else el.2 :: (nosubstexcept conf :: in)) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3, vr) then el.1 else

el.2) is a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val

(vr.∗.3) then (let w be vr in [subst (vr :: ∗ : w) el.1]) else el.2), where w is a new element

that does not occur in this definition;

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val () then el.1 else el.2) is

a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then el.1 else

el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1, vr) abn (vr.∗.2) then bd) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) then (if (vr is undefined)

then und else el.1) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) und () abn (vr.∗.2) then el.1 else el.2) is a shortcut

for (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then el.1 else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2, vr) then el.1 else el.2) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) abn (vr.∗.2) then (if (vr is abnormal) then vr else

el.1) else el.2);

• (if el matches pt var (vr.∗) seq (vr.s.∗) abn () then el.1 else el.2) is a shortcut for

(if el matches pt var (vr.∗) seq (vr.s.∗) then el.1 else el.2).

The element cnd specifies the restriction on the values of the pattern variables. The undefined

value is propagated through the variables of vr.∗.1. Abnormal values are propagated through

the variables of vr.∗.2. The special element vr :: ∗ references to the value of element associated

with the pattern variable vr. A pattern variable is evaluated if the element associated with it

is evaluated. Thus, the sequence vr.∗.3 contains evaluated pattern variables. A pattern variable

is quoted if the element associated with it is not evaluated.

The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3), where cnd and else el.2

in this form can be omitted. The omitted objects correspond to var (), seq (), und (), abn (),

val (), where true and else skip, respectively.

The form (el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd) is

a shortcut for (if el matches pt var (vr.∗) seq (vr.s.∗) und (vr.∗.1) abn (vr.∗.2) val (vr.∗.3) where cnd
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then true else und). The objects var (vr.∗), seq (vr.s.∗), und (vr.∗.1), abn (vr.∗.2), val (vr.∗.3) and

where cnd in this form can be omitted. The omitted objects correspond to var (), seq (), und (),

abn (), val () and where true, respectively.

15.10. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows:

(definition conf :: cur then conf :: cur :: atm);

(interpretation conf :: cur :: atm then fn),

where [fn sb] = cnf .

16. Justification of requirements

for conceptual configuration systems

In this section, we establish that CCSs meet the requirements stated in section 1:

1. The formalism must model the conceptual structure of states and state objects of the

IQS. The conceptual structure of states of the IQS is modelled by elements (attributes,

concepts, individuals) and, in more detail, usual and generic conceptuals of conceptual

configurations.

2. The formalism must model the content of the conceptual structure. The content of the

conceptual structure is modelled by conceptual configurations.

3. The formalism must model information queries, information query objects, answers and

answer objects of the IQS. Information queries, information query objects, answers and

answer objects of the IQS are modelled by elements of the CCS.

4. The formalism must model the interpretation function of the IQS. The interpretation

function of the IQS is modelled by the interpretation function value of the CCS.

5. The formalism must be quite universal to model typical ontological elements. Models of

typical ontological elements is presented in sections 6-10, 12 and 13.

6. The formalism must provide a quite complete classification of ontological elements, in-

cluding the determination of their new kinds and subkinds with arbitrary conceptual gran-

ularity. Classification of ontological elements based on the two-level scheme is presented

in section 11. The arbitrary conceptual granularity is provided by conceptuals.

7. The model of the interpretation function must be extensible. The model of the interpre-

tation function of the IQS is extended by addition of element definitions.
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8. The formalism must have language support. The language associated with the formalism

must define syntactic representations of models of states, state objects, queries, query

objects, answers and answer objects and includes the set of predefined basic query models.

The CCSL language associated with CCSs defines syntactic representations of models of

states, state objects, queries, query objects, answers and answer objects and includes the

set of predefined basic query models.

Thus, the requirements are met for CCSs.

17. Comparison of conceptual configuration systems

with abstract state machines

Abstract state machines (ASMs) [3, 4] are the special kind of transition systems in which

states are algebraic systems. They are a formalism for abstract unified modelling of computer

systems. We compare CCSs with ASMs, based on the requirements stated in section 1:

1. The formalism models the conceptual structure of states of the IQS. The conceptual struc-

ture of states of the IQS is modelled by the appropriate choice of symbols of the signature

of an algebraic system. Thus, both ASMs and CCSs model the conceptual structure of

states of the IQS, but CCSs make it by more natural ontological way.

2. The formalism models the content of the conceptual structure. The content of the con-

ceptual structure is modelled by the interpretation of signature symbols in a particular

state.

3. The formalism must model information queries, information query objects, answers and

answer objects of the IQS. Information queries and information query objects of the IQS

are modelled by terms, and answers and answer objects of the IQS are modelled by values

of the terms. The element-based representation in CCSs is reacher than the term-based

representation in ASMs.

4. The formalism must model the interpretation function of the IQS. The interpretation

function of the IQS are modelled by the term interpretation function that is simpler than

the element interpretation function in CCSs.

5. The formalism is quite universal to model typical ontological elements. In contrast to

CCSs, typical ontological elements are not naturally modelled by ASMs.

6. The formalism provides a quite complete classification of ontological elements, including

the determination of their new kinds and subkinds with arbitrary conceptual granularity.
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In contrast to CCSs, ASMs do not allow to classify naturally ontological elements and

define their new kinds and subkinds with arbitrary conceptual granularity.

7. The model of the interpretation function must be extensible. The model of the interpre-

tation function can not be directly extended in ASMs.

8. The formalism must have language support. There are two languages AsmL [5] and XasM

[6] for specification of ASMs. The AsmL language is more expressive than CTSL. It is

fully integrated into the Microsoft .NET environment and uses XML and Word for literate

specifications. XASM realizes a component-based modularization concept based on the

notion of external functions as defined in ASMs.

18. Conclusion

In the paper two formalisms (information query systems and conceptual configuration sys-

tems) for abstract unified modelling of the artifacts of the conceptual design of closed infor-

mation systems have been proposed. The basic definitions of the theory of CCSs have been

given. The classification and interpretation of elements of such conceptual structures of CCSs

as conceptuals, conceptual states, conceptual configurations, concepts and attributes has been

presented. The classification of ontological elements based on these conceptual structures has

been described. A language of CCSs has been defined.

The feature of conceptual design for closed information systems based on conceptual con-

figuration systems is that they allow us to describe the conceptual structure of states of the

information systems in detail. We plan to extend this formalism to describe both states and

state transitions in detail and apply it for conceptual design of wider class of information

systems.
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